Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

IL-17 producing mast cells promote the expansion of myeloid-derived suppressor cells in a mouse allergy model of colorectal cancer.

  • Xiaowei Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Food allergy can influence the development of colorectal cancer, although the underlying mechanisms are unclear. While mast cells (MC) store and secrete histamine, immature myeloid cells (IMC) are the major site of histidine decarboxylase (HDC) expression, the enzyme responsible for histamine production. From our earlier work, we hypothesized that histamine is central to the association between allergy and colorectal carcinogenesis through its influence on the MC-MDSC axis. Here, we show that in wild type (WT) mice, ovalbumin (OVA) immunization elicits a typical TH2 response. In contrast, in HDC-/- mice, the response to OVA allergy is skewed towards infiltration by IL-17 expressing MCs. This response is inhibited by histamine treatment. The HDC-/- allergic IL-17-expressing MCs promote MDSC proliferation and upregulation of Cox-2 and Arg-1. OVA allergy in HDC-/- mice increases the growth of colon tumor cells in both the MC38 tumor cell implantation model and the AOM/DSS carcinogenesis model. Taken together, our results show that histamine represses IL-17-expressing MCs and their subsequent activation of MDSCs, attenuating the risk of colorectal cancer in the setting of food allergy. Targeting the MC-MDSC axis may be useful for cancer prevention and treatment in patients, particularly in those with food allergy.


Oncogenic BRAF mutation induces DNA methylation changes in a murine model for human serrated colorectal neoplasia.

  • Catherine E Bond‎ et al.
  • Epigenetics‎
  • 2018‎

Colorectal cancer is a major cause of cancer death and approximately 20% arises within serrated polyps, which are under-recognized and poorly understood. Human serrated colorectal polyps frequently exhibit both oncogenic BRAF mutation and widespread DNA methylation changes, which are important in silencing genes restraining neoplastic progression. Here, we investigated whether in vivo induction of mutant Braf is sufficient to result in coordinated promoter methylation changes for multiple cancer-related genes. The BrafV637E mutation was induced in murine intestine on an FVB;C57BL/6J background and assessed for morphological and DNA methylation changes at multiple time points from 10 days to 14 months. Extensive intestinal hyperplasia developed by 10 days post-induction of the mutation. By 8 months, most mice had murine serrated adenomas with dysplasia and invasive cancer developed in 40% of mice by 14 months. From 5 months onwards, Braf mutant mice showed extensive, gene-specific increases in DNA methylation even in hyperplastic mucosa without lesions. This demonstrates that persistent oncogenic Braf signaling is sufficient to induce widespread DNA methylation changes. This occurs over an extended period of time, mimicking the long latency followed by rapid progression of human serrated neoplasia. This study establishes for the first time that DNA methylation arises slowly in direct response to prolonged oncogenic Braf signaling in serrated polyps; this finding has implications both for chemoprevention and for understanding the origin of DNA hypermethylation in cancer generally.


Three single nucleotide polymorphisms associated with type 2 diabetes mellitus in a Chinese population.

  • Meijun Chen‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

An Indian study recently observed three new loci: rs9552911 in the SGCG, rs1593304 near PLXNA4 and rs4858889 in SCAP associated with type 2 diabetes mellitus (T2DM) in a south Asian population. The present study aimed to validate these findings in a Chinese population. We genotyped the above three single-nucleotide polymorphisms (SNPs), rs9552911, rs1593304, and rs4858889, in a group of 1,972 Chinese individuals, comprising of 966 type 2 diabetic patients and 976 controls. Anthropometric variables and biochemical traits were measured in all the participants. The association analyses of genotype-disease and genotype-traits were estimated. The genotype frequency of rs9552911 differed statistically between the cases and controls (P=0.017). The difference was also evident between the cases and controls in non-obese participants (P=0.033). In addition, the SNP rs9552911 was associated with weight (P=0.033), total cholesterol (P=0.006) and low-density lipoprotein-cholesterol (P=0.007). The SNP rs1593304 was associated with β-cell function estimated by the homeostatic model assessment of β-cell function (P=0.041). However, there was no significant association between rs4858889 and T2DM. In conclusion, the results show that the SNP rs9552911 was associated with T2DM, possibly by affecting body mass index and lipid metabolism. The SNP rs1593304 may impair β-cell function.


Effects of Melanocortin 3 and 4 Receptor Deficiency on Energy Homeostasis in Rats.

  • Panpan You‎ et al.
  • Scientific reports‎
  • 2016‎

Melanocortin-3 and 4 receptors (MC3R and MC4R) can regulate energy homeostasis, but their respective roles especially the functions of MC3R need more exploration. Here Mc3r and Mc4r single and double knockout (DKO) rats were generated using CRISPR-Cas9 system. Metabolic phenotypes were examined and data were compared systematically. Mc3r KO rats displayed hypophagia and decreased body weight, while Mc4r KO and DKO exhibited hyperphagia and increased body weight. All three mutants showed increased white adipose tissue mass and adipocyte size. Interestingly, although Mc3r KO did not show a significant elevation in lipids as seen in Mc4r KO, DKO displayed even higher lipid levels than Mc4r KO. DKO also showed more severe glucose intolerance and hyperglycaemia than Mc4r KO. These data demonstrated MC3R deficiency caused a reduction of food intake and body weight, whereas at the same time exhibited additive effects on top of MC4R deficiency on lipid and glucose metabolism. This is the first phenotypic analysis and systematic comparison of Mc3r KO, Mc4r KO and DKO rats on a homogenous genetic background. These mutant rats will be important in defining the complicated signalling pathways of MC3R and MC4R. Both Mc4r KO and DKO are good models for obesity and diabetes research.


Identification of Frataxin as a regulator of ferroptosis.

  • Jing Du‎ et al.
  • Redox biology‎
  • 2020‎

Ferroptosis is a newly discovered form of non-apoptotic regulated cell death and is characterized by iron-dependent and lipid peroxidation. Due to the enhanced dependence on iron in cancer cells, induction of ferroptosis is becoming a promising therapeutic strategy. However, the precise underlying molecular mechanism and regulation process of ferroptosis remains largely unknown. In the present study, we demonstrate that the protein Frataxin (FXN) is a key regulator of ferroptosis by modulating iron homeostasis and mitochondrial function. Suppression of FXN expression specifically repressed the proliferation, destroyed mitochondrial morphology, impeded Fe-S cluster assembly and activated iron starvation stress. Moreover, suppression of FXN expression significantly enhanced erastin-induced cell death through accelerating free iron accumulation, lipid peroxidation and resulted in dramatic mitochondria morphological damage including enhanced fragmentation and vanished cristae. In addition, this type of cell death was confirmed to be ferroptosis, since it could be pharmacologically restored by ferroptotic inhibitor Fer-1 or GSH, but not by inhibitors of apoptosis, necrosis. Vice versa, enforced expression of FXN blocked iron starvation response and erastin-induced ferroptosis. More importantly, pharmacological or genetic blocking the signal of iron starvation could completely restore the resistance to ferroptosis in FXN knockdown cells and xenograft graft in vivo. This paper suggests that FXN is a novel ferroptosis modulator, as well as a potential provided target to improve the antitumor activity based on ferroptosis.


The cellular basis of distinct thirst modalities.

  • Allan-Hermann Pool‎ et al.
  • Nature‎
  • 2020‎

Fluid intake is an essential innate behaviour that is mainly caused by two distinct types of thirst1-3. Increased blood osmolality induces osmotic thirst that drives animals to consume pure water. Conversely, the loss of body fluid induces hypovolaemic thirst, in which animals seek both water and minerals (salts) to recover blood volume. Circumventricular organs in the lamina terminalis are critical sites for sensing both types of thirst-inducing stimulus4-6. However, how different thirst modalities are encoded in the brain remains unknown. Here we employed stimulus-to-cell-type mapping using single-cell RNA sequencing to identify the cellular substrates that underlie distinct types of thirst. These studies revealed diverse types of excitatory and inhibitory neuron in each circumventricular organ structure. We show that unique combinations of these neuron types are activated under osmotic and hypovolaemic stresses. These results elucidate the cellular logic that underlies distinct thirst modalities. Furthermore, optogenetic gain of function in thirst-modality-specific cell types recapitulated water-specific and non-specific fluid appetite caused by the two distinct dipsogenic stimuli. Together, these results show that thirst is a multimodal physiological state, and that different thirst states are mediated by specific neuron types in the mammalian brain.


Brusatol-Enriched Brucea javanica Oil Ameliorated Dextran Sulfate Sodium-Induced Colitis in Mice: Involvement of NF-κB and RhoA/ROCK Signaling Pathways.

  • Xinghan Zheng‎ et al.
  • BioMed research international‎
  • 2021‎

Brucea javanica oil (BJO) is beneficial for the treatment of ulcerative colitis (UC), and that quassinoids in particular brusatol are bioactive components. However, it is still uncertain whether or not other components in BJO, such as oleic acid and fatty acids, have an anti-UC effect. The present study is aimed at comparing the anti-UC effects between brusatol-enriched BJO (BE-BJO) and brusatol-free BJO (BF-BJO) and at exploring the effects and mechanisms of BE-BJO on colon inflammation and intestinal epithelial barrier function. Balb/C mice received 3% (wt/vol) DSS for one week to establish the UC model. Different doses of BE-BJO, BF-BJO, or BJO were treated. The result illustrated that BE-BJO alleviated DSS-induced loss of body weight, an increase of disease activity index (DAI), and a shortening of colon, whereas BF-BJO did not have these protective effects. BE-BJO treatment improved the morphology of colon tissue, inhibited the production and release of TNF-α, IFN-γ, IL-6, and IL-1β in the colon tissue, and reversed the decreased expressions of ZO-1, occludin, claudin-1, and E-cadherin induced by DSS but augmented claudin-2 expression. Mechanistically, BE-BJO repressed phosphorylation of NF-κB subunit p65, suppressed RhoA activation, downregulated ROCK, and prevented phosphorylation of myosin light chain (MLC) in DSS-treated mice, indicating that the protective effect of BE-BJO is attributed to suppression of NF-κB and RhoA/ROCK signaling pathways. These findings confirm that brusatol is an active component from BJO in the treatment of UC.


Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater.

  • Liguo Zhang‎ et al.
  • Chemosphere‎
  • 2022‎

Corn starch processing wastewater (CSPW) is a high-strength organic wastewater and biological treatment is considered as the dominant process. The present work investigated the effects of pH on the bioenergy production and spatial succession of microbial community in an anaerobic baffled reactor (ABR) treating CSPW. The results showed that above 90.5% of COD removal and above 16.6 L d-1 of methane were achieved at the influent pHs of 8.0 and 7.0 under organic loading rate of 4.0 kg COD·m-3·L-1 condition. Further decreasing the influent pH to 6.0 resulted in the COD removal decreased to 89.7%. Besides, 9.2 L d-1 of hydrogen and 13.0 L d-1 of methane were obtained. There was significant difference in the volatile fatty acids profiles during the variation of pH. Illumina Miseq sequencing showed that Clostridium, Ethanoligenens, Megasphaera, Prevotella and Trichococcus with relative abundance of 2.1%∼28.1% were the dominant hydrogen-producing bacteria in C1. Methanogens (Methanothrix and Methanobacterium) dominated in the last three compartments. Function predicted analysis revealed that the abundance of metabolic-related gene families containing carbohydrate, amino acids and energy in the last three compartments were higher than that in C1. A deduced biodegradation model of CSPW in ABR revealed that the anaerobic sludge in C1 mainly produced hydrogen. Microbial population in C3 was responsible for COD removal and methane production. The redundancy analysis revealed that hydrogen production was highly correlated with some hydrogen-producing bacteria in C1, whereas methane production was positively correlated with microbial group in C2∼ C4.


Overexpression of miR-29 Leads to Myopathy that Resemble Pathology of Ullrich Congenital Muscular Dystrophy.

  • Chuncheng Liu‎ et al.
  • Cells‎
  • 2019‎

Ullrich congenital muscular dystrophy (UCMD) bring heavy burden to patients' families and society. Because the incidence of this disease is very low, studies in patients are extremely limited. Animal models of this disease are indispensable. UCMD belongs to extracellular matrix-related diseases. However, the disease models constructed by knocking out some pathogenic genes of human, such as the Col6a1, Col6a2, or Col6a3 gene, of mice could not mimic UCMD. The purpose of this study is to construct a mouse model which can resemble the pathology of UCMD. miR-29 is closely related to extracellular matrix deposition of tissues and organs. To address this issue, we developed a mouse model for overexpression miR-29 using Tet-on system. In the muscle-specific miR-29ab1 cluster transgenic mice model, we found that mice exhibited dyskinesia, dyspnea, and spinal anomaly. The skeletal muscle was damaged and regenerated. At the same time, we clarify the molecular mechanism of the role of miR-29 in this process. Different from human, Col4a1 and Col4a2, target genes of miR-29, are the key pathogenic genes associating with these phenotypes. This mouse model simulates the human clinical and pathological characteristics of UCMD patients and is helpful for the subsequent research and treatment of UCMD.


Allopregnanolone Modulates GABAAR-Dependent CaMKIIδ3 and BDNF to Protect SH-SY5Y Cells Against 6-OHDA-Induced Damage.

  • Tongtong Wang‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Allopregnanolone (APα), as a functional neurosteroid, exhibits the neuroprotective effect on neurodegenerative diseases such as Parkinson's disease (PD) through γ-aminobutyric acid A receptor (GABAAR), but it has not been completely understood about its molecular mechanisms. In order to investigate the neuroprotective effect of APα, as well as to clarify its possible molecular mechanisms, SH-SY5Y neuronal cell lines were incubated with 6-hydroxydopamine (6-OHDA), which has been widely used as an in vitro model for PD, along with APα alone or in combination with GABAAR antagonist (bicuculline, Bic), intracellular Ca2+ chelator (EGTA) and voltage-gated L-type Ca2+ channel blocker (Nifedipine). The viability, proliferation, and differentiation of SH-SY5Y cells, the expression levels of calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase II δ3 (CaMKIIδ3), cyclin-dependent kinase-1 (CDK1) and brain-derived neurotrophic factor (BDNF), as well as the interaction between CaMKIIδ3 and CDK1 or BDNF, were detected by morphological and molecular biological methodology. Our results found that the cell viability and the number of tyrosine hydroxylase (TH), bromodeoxyuridine (BrdU) and TH/BrdU-positive cells in 6-OHDA-treated SH-SY5Y cells were significantly decreased with the concomitant reduction in the expression levels of aforementioned proteins, which were ameliorated following APα administration. In addition, Bic could further increase the number of TH or BrdU-positive cells as well as the expression levels of aforementioned proteins except for TH/BrdU-double positive cells, while EGTA and Nifedipine could attenuate the expression levels of CaM, CaMKIIδ3 and BDNF. Moreover, there existed a direct interaction between CaMKIIδ3 and CDK1 or BDNF. As a result, APα-induced an increase in the number of TH-positive SH-SY5Y cells might be mediated through GABAAR via Ca2+/CaM/CaMKIIδ3/BDNF (CDK1) signaling pathway, which would ultimately facilitate to elucidate PD pathogenesis and hold a promise as an alternative therapeutic target for PD.


Comprehensive analysis of endoplasmic reticulum-related and secretome gene expression profiles in the progression of non-alcoholic fatty liver disease.

  • Rong Gao‎ et al.
  • Frontiers in endocrinology‎
  • 2022‎

Endoplasmic reticulum (ER) is the principal organelle for protein synthesis, such as hepatokines and transmembrane proteins, and is critical for maintaining physiological function. Dysfunction of ER is associated with metabolic disorders. However, the role of ER homeostasis as well as hepatokines in the progression of non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. Here we comprehensively analyzed the RNA-seq profiles of liver biopsies from 206 NAFLD patients and 10 controls from dataset GSE135251. The co-expression modules were constructed based on weighted gene co-expression network analysis and six co-expression modules were identified, of which brown module stood out to be significantly associated with fibrosis stage and NAFLD activity score (NAS). Subsequently, cytoscape with cytoHubba plugin was applied to identify hub genes in the brown module. GO and KEGG enrichment analysis of the top 20 hub genes were performed and showed the involvement of extracellular matrix formation, collagen synthesis and decomposition, etc. Further, the expression of the top 20 hub genes were found to be a consistent increasing trend as the fibrosis stages and NAS increased, which have been validated both in HFD fed and HFHC fed mice. Among these genes, THY1, PTGDS, TMPRSS3, SPON1, COL1A2, RHBDF1, COL3A1, COL5A1, COL1A1 and IGFBP7 performed well in distinguishing fibrosis stage, while COL1A2, COL3A1, THY1, RHBDF1 and COL1A2 exhibited good capacity to discriminate NAS. Besides, RHBDF1, COL3A1, QSOX1, STING1, COL5A1, IGFBP7, COL4A2, COL1A1, FKBP10 and COL1A2 also showed a strong power in the diagnosis of NAFLD. In addition, COL1A1, COL1A2, COL3A1, COL8A2, IGFBP7, PGF, PTGDS, SPON1, THY1 and TIMP1 were identified as secretome genes from the top 20 hub genes. Of them, circulated THY1 and collagen III level were validated to be significantly elevated in the MCD diet-induced mice. Thus, we provided a systemic view on understanding the pathological roles and mechanisms of ER as well as secretome in NAFLD progression. THY1, COL1A1, COL1A2, COL3A1 and RHBDF1 could be served as candidate biomarkers to evaluate the progression of NAFLD.


Immunoglobulin Superfamily Containing Leucine-Rich Repeat (Islr) Participates in IL-6-Mediated Crosstalk between Muscle and Brown Adipose Tissue to Regulate Energy Homeostasis.

  • Chang Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Delineating proinflammatory microenvironmental signals by ex vivo modeling of the immature intestinal stroma.

  • Mari Ichinose‎ et al.
  • Scientific reports‎
  • 2021‎

The intestinal stroma provides an important microenvironment for immune cell activation. The perturbation of this tightly regulated process can lead to excessive inflammation. We know that upregulated Toll-like receptor 4 (TLR4) in the intestinal epithelium plays a key role in the inflammatory condition of preterm infants, such as necrotizing enterocolitis (NEC). However, the surrounding stromal contribution to excessive inflammation in the pre-term setting awaits careful dissection. Ex vivo co-culture of embryonic day 14.5 (E14.5) or adult murine intestinal stromal cells with exogenous monocytes was undertaken. We also performed mRNAseq analysis of embryonic and adult stromal cells treated with vehicle control or lipopolysaccharide (LPS), followed by pathway and network analyses of differentially regulated transcripts. Cell characteristics were compared using flow cytometry and pHrodo red phagocytic stain, candidate gene analysis was performed via siRNA knockdown and gene expression measured by qPCR and ELISA. Embryonic stromal cells promote the differentiation of co-cultured monocytes to CD11bhighCD11chigh mononuclear phagocytes, that in turn express decreased levels of CD103. Global mRNAseq analysis of stromal cells following LPS stimulation identified TLR signaling components as the most differentially expressed transcripts in the immature compared to adult setting. We show that CD14 expressed by CD11b+CD45+ embryonic stromal cells is a key inducer of TLR mediated inflammatory cytokine production and phagocytic activity of monocyte derived cells. We utilise transcriptomic analyses and functional ex vivo modelling to improve our understanding of unique molecular cues provided by the immature intestinal stroma.


Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia.

  • Candice R Gurbatri‎ et al.
  • Nature communications‎
  • 2024‎

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells.

  • Weixue Wang‎ et al.
  • Oncology research‎
  • 2024‎

Different from necrosis, apoptosis, autophagy and other forms of cell death, ferroptosis is a mechanism that catalyzes lipid peroxidation of polyunsaturated fatty acids under the action of iron divalent or lipoxygenase, leading to cell death. Apatinib is currently used in the third-line standard treatment of advanced gastric cancer, targeting the anti-angiogenesis pathway. However, Apatinib-mediated ferroptosis in vascular endothelial cells has not been reported yet. Tumor-secreted exosomes can be taken up into target cells to regulate tumor development, but the mechanism related to vascular endothelial cell ferroptosis has not yet been discovered. Here, we show that exosomes secreted by gastric cancer cells carry miR-214-3p into vascular endothelial cells and directly target zinc finger protein A20 to negatively regulate ACSL4, a key enzyme of lipid peroxidation during ferroptosis, thereby inhibiting ferroptosis in vascular endothelial cells and reducing the efficiency of Apatinib. In conclusion, inhibition of miR-214-3p can increase the sensitivity of vascular endothelial cells to Apatinib, thereby promoting the antiangiogenic effect of Apatinib, suggesting a potential combination therapy for advanced gastric cancer.


Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR.

  • Qian Du‎ et al.
  • Oncotarget‎
  • 2016‎

Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages.


Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer.

  • Zina Dubeykovskaya‎ et al.
  • Nature communications‎
  • 2016‎

CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer.


Point Mutations in Exon 1B of APC Reveal Gastric Adenocarcinoma and Proximal Polyposis of the Stomach as a Familial Adenomatous Polyposis Variant.

  • Jun Li‎ et al.
  • American journal of human genetics‎
  • 2016‎

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Detection of type 2 diabetes related modules and genes based on epigenetic networks.

  • Hui Liu‎ et al.
  • BMC systems biology‎
  • 2014‎

Type 2 diabetes (T2D) is one of the most common chronic metabolic diseases characterized by insulin resistance and the decrease of insulin secretion. Genetic variation can only explain part of the heritability of T2D, so there need new methods to detect the susceptibility genes of the disease. Epigenetics could establish the interface between the environmental factor and the T2D Pathological mechanism.


Kisspeptin Receptor GPR54 Promotes Adipocyte Differentiation and Fat Accumulation in Mice.

  • Tongtong Wang‎ et al.
  • Frontiers in physiology‎
  • 2018‎

GPR54, Kisspeptin-1 receptor (KISS1R), a member of rhodopsin family, plays a critical role in puberty development and has been proposed to be involved in regulation of energy metabolism. This study aims to explore the function of GPR54 in adipogenesis, lipid metabolism, and obesity in addition to its effect through hormones. Results showed that when fed a high-fat diet, the weight growth of castrated or ovariectomized Gpr54-/- mice was significantly slower than that of WT control, together with a lower triglyceride concentration. The ratio of white adipose tissue was lower, and average size of adipocytes was smaller in Gpr54-/- mice. Meanwhile, there were less adipose tissue macrophages (ATMs), especially pro-inflammatory macrophages. Expression of inflammatory related genes also indicated that inflammatory response caused by obesity was not as drastic in Gpr54-/- mice as in WT mice. Liver triglyceride in Gpr54-/- mice was reduced, especially in female mice. On the other hand, oil drop formation was accelerated when hepatocytes were stimulated by kisspeptin-10 (Kp-10). Primary mesenchymal stem cells (MSCs) of Gpr54-/- mice were less likely to differentiate into adipocytes. When stimulated by Kp-10, 3T3-L1 cell differentiation into adipocytes was accelerated and triglyceride synthesis was significantly promoted. These data indicated that GPR54 could affect obesity development by promoting adipocyte differentiation and triglyceride accumulation. To further elucidate the mechanism, genes related to lipid metabolism were analyzed. The expression of genes involved in lipid synthesis including PPARγ, ACC1, ADIPO, and FAS was significantly changed in Gpr54-/- mice. Among them PPARγ which also participate in adipocyte differentiation displayed a marked reduction. Moreover, phosphorylation of ERK, which involved in GPR54 signaling, was significantly decreased in Gpr54-/- mice, suggesting that GPR54 may promote lipid synthesis and obesity development by activating MAP kinase pathway. Therefore, in addition to the involvement in hormone regulation, our study demonstrated that GPR54 directly participates in obesity development by promoting adipocyte differentiation and fat accumulation. This provided evidence of involvement of GPR54 in lipid metabolism, and revealed new potentials for the identification and development of novel drug targets for metabolic diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: