Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model.

  • Nathalie Allaman-Pillet‎ et al.
  • Oncotarget‎
  • 2017‎

BIGH3, a secreted protein of the extracellular matrix interacts with collagen and integrins on the cell surface. BIGH3 can have opposing functions in cancer, acting either as tumor suppressor or promoter by enhancing tumor progression and angiogenesis. In the eye, BIGH3 is expressed in the cornea and the retinal pigment epithelium and could impact on the development of retinoblastoma, the most common paediatric intraocular neoplasm. Retinoblastoma initiation requires the inactivation of both alleles of the RB1 tumor suppressor gene in the developing retina and tumor progression involves additional genomic changes. To determine whether BIGH3 affects retinoblastoma development, we generated a retinoblastoma mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing in these mice resulted in enhanced tumor development in the retina. A decrease in apoptosis is involved in the initial events of tumorigenesis, followed by an increased activity of the pro-survival ERK pathway as well as an upregulation of cyclin-dependent kinases (CDKs). Taken together, these data suggest that BIGH3 acts as a tumor suppressor in the retina.


Identifying mutations in Tunisian families with retinal dystrophy.

  • Imen Habibi‎ et al.
  • Scientific reports‎
  • 2016‎

Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.


Identification of HMX1 target genes: a predictive promoter model approach.

  • Arnaud Boulling‎ et al.
  • Molecular vision‎
  • 2013‎

A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes.


Different Phenotypes in Pseudodominant Inherited Retinal Dystrophies.

  • Imen Habibi‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Retinal dystrophies (RD) are a group of Mendelian disorders caused by rare genetic variations leading to blindness. A pathogenic variant may manifest in both dominant or recessive mode and clinical and genetic heterogeneity makes it difficult to establish a precise diagnosis. In this study, families with autosomal dominant RD in successive generations were identified, and we aimed to determine the disease's molecular origin in these consanguineous families. Whole exome sequencing was performed in the index patient of each family. The aim was to determine whether these cases truly represented examples of dominantly inherited RD, or whether another mode of inheritance might be applicable. Six potentially pathogenic variants in four genes were identified in four families. In index patient with enhanced S-cone syndrome in F1, we identified a new digenetic combination: a heterozygous variant p.[G51A];[=] in RHO and a homozygous pathogenic variant p.[R311Q];[R311Q] in NR2E3. Helicoid subretinal fibrosis associated with recessive NR2E3 variant p.[R311Q];[R311Q] was identified in F2. A new frameshift variant c.[105delG];[105delG] in RDH12 was found in F3 with cone-rod dystrophy. In F4, the compound heterozygous variants p.[R964*];[W758*] were observed in IMPG2 with a retinitis pigmentosa (RP) phenotype. We showed that both affected parents and the offspring, were homozygous for the same variants in all four families. Our results provide evidence that in consanguineous families, autosomal recessive can be transmitted as pseudodominant inheritance in RD patients, and further extend our knowledge of pathogenic variants in RD genes.


New COL6A6 Variant Causes Autosomal Dominant Retinitis Pigmentosa in a Four-Generation Family.

  • Veronika Vaclavik‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

To report that variants in the gene for a large lamina basal component protein, COL6A6 (collagen type VI alpha 6 chain, Col6α6), linked to chromosome 3p22.1 causes retinitis pigmentosa (RP) in patients with autosomal dominant transmission (adRP).


Retinal ischemia-induced apoptosis is associated with alteration in Bax and Bcl-x(L) expression rather than modifications in Bak and Bcl-2.

  • Nathalie Produit-Zengaffinen‎ et al.
  • Molecular vision‎
  • 2009‎

Apoptosis is known to play a key role in cell death after retinal ischemia. However, little is known about the kinetics of the signaling pathways involved and their contribution to this process. The aim of this study was to determine whether changes in the expression of molecules in the mitochondrial apoptotic pathway might explain the progression of retinal damage following ischemia/reperfusion.


IROme, a new high-throughput molecular tool for the diagnosis of inherited retinal dystrophies.

  • Daniel F Schorderet‎ et al.
  • BioMed research international‎
  • 2013‎

The molecular diagnosis of retinal dystrophies is difficult because of the very important number of genes implicated and is rarely helped by genotype-phenotype correlations. This prompted us to develop IROme, a custom designed in solution-based targeted exon capture assay (SeqCap EZ Choice library, Roche NimbleGen) for 60 retinitis pigmentosa-linked genes and three candidate genes (942 exons). Pyrosequencing was performed on a Roche 454 GS Junior benchtop high-throughput sequencing platform. In total, 23 patients affected by retinitis pigmentosa were analyzed. Per patient, 39.6 Mb were generated, and 1111 sequence variants were detected on average, at a median coverage of 17-fold. After data filtering and sequence variant prioritization, disease-causing mutations were identified in ABCA4, CNGB1, GUCY2D, PROM1, PRPF8, PRPF31, PRPH2, RHO, RP2, and TULP1 for twelve patients (55%), ten mutations having never been reported previously. Potential mutations were identified in 5 additional patients, and in only 6 patients no molecular diagnosis could be established (26%). In conclusion, targeted exon capture and next-generation sequencing are a valuable and efficient approach to identify disease-causing sequence variants in retinal dystrophies.


Autophagy defect is associated with low glucose-induced apoptosis in 661W photoreceptor cells.

  • Delphine Balmer‎ et al.
  • PloS one‎
  • 2013‎

Glucose is an important metabolic substrate of the retina and diabetic patients have to maintain a strict normoglycemia to avoid diabetes secondary effects, including cardiovascular disease, nephropathy, neuropathy and retinopathy. Others and we recently demonstrated the potential role of hypoglycemia in diabetic retinopathy. We showed acute hypoglycemia to induce retinal cell death both in vivo during an hyperinsulinemic/hypoglycemic clamp and in vitro in 661W photoreceptor cells cultured at low glucose concentration. In the present study, we showed low glucose to induce a decrease of BCL2 and BCL-XL anti-apoptotic proteins expression, leading to an increase of free pro-apoptotic BAX. In parallel, we showed that, in retinal cells, low glucose-induced apoptosis is involved in the process of autophagosomes formation through the AMPK/RAPTOR/mTOR pathway. Moreover, the decrease of LAMP2a expression led to a defect in the autophagosome/lysosome fusion process. Specific inhibition of autophagy, either by 3-methyladenine or by down-regulation of ATG5 or ATG7 proteins expression, increased caspase 3 activation and 661W cell death. We show that low glucose modifies the delicate equilibrium between apoptosis and autophagy. Cells struggled against low nutrient condition-induced apoptosis by starting an autophagic process, which led to cell death when inhibited. We conclude that autophagy defect is associated with low glucose-induced 661W cells death that could play a role in diabetic retinopathy. These results could modify the way of addressing negative effects of hypoglycemia. Short-term modulation of autophagy could be envisioned to treat diabetic patients in order to avoid secondary complications of the disease.


Bax-induced apoptosis in Leber's congenital amaurosis: a dual role in rod and cone degeneration.

  • Séverine Hamann‎ et al.
  • PloS one‎
  • 2009‎

Pathogenesis in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65(-/-) mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65(-/-) mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65(-/-)/Gnat1(-/-) mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65(-/-)/Bax(-/-) mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65(-/-) mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65(-/-)/Bax(-/-) mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice.This is the first report, to our knowledge, that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in Rpe65-dependent LCA disease. These results highlight the necessity to investigate and understand the specific death signaling pathways committed in rods and cones to develop effective therapeutic approaches to treat RP diseases.


5'AMP-activated protein kinase alpha deficiency enhances stress-induced apoptosis in BHK and PC12 cells.

  • Margaret M Shaw‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2007‎

5'AMP-activated protein kinase (AMPK) activation occurs under a variety of stress conditions but the role of this enzyme in the promotion or inhibition of stress-induced cell death is unclear. To address this issue, we transformed two different cell lines with shRNA-expressing plasmids, targeting the alpha subunit of AMPK, and verified AMPKalpha downregulation. The cell lines were then stressed by exposure to medium without glucose (PC12 cells) or with the viral thymidine kinase-specific DNA replication inhibitors: acyclovir, penciclovir and ganciclovir (herpes simplex virus thymidine kinase-expressing Baby Hamster Kidney cells). In non-AMPK-downregulated cells, these stress treatments induced AMPK upregulation and phosphorylation, leaving open the question whether the association of AMPK activation with stress-induced cell death reflects a successful death-promoting or an ineffective death-inhibiting activity. In AMPKalpha-deficient cells (expressing AMPKalpha-specific shRNAs or treated with Compound C) exposure to low glucose medium or DNA replication inhibitors led to an enhancement of cell death, indicating that, under the conditions examined, the role of activated AMPK is not to promote, but to protect from or delay stress-induced cell death.


Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2.

  • Anren Li‎ et al.
  • American journal of human genetics‎
  • 2004‎

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal dystrophy characterized by multiple glistening intraretinal crystals scattered over the fundus, a characteristic degeneration of the retina, and sclerosis of the choroidal vessels, ultimately resulting in progressive night blindness and constriction of the visual field. The BCD region of chromosome 4q35.1 was refined to an interval flanked centromerically by D4S2924 by linkage and haplotype analysis; mutations were found in the novel CYP450 family member CYP4V2 in 23 of 25 unrelated patients with BCD tested. The CYP4V2 gene, transcribed from 11 exons spanning 19 kb, is expressed widely. Homology to other CYP450 proteins suggests that CYP4V2 may have a role in fatty acid and steroid metabolism, consistent with biochemical studies of patients with BCD.


Genetic spectrum of retinal dystrophies in Tunisia.

  • Imen Habibi‎ et al.
  • Scientific reports‎
  • 2020‎

We report the molecular basis of the largest Tunisian cohort with inherited retinal dystrophies (IRD) reported to date, identify disease-causing pathogenic variants and describe genotype-phenotype correlations. A subset of 26 families from a cohort of 73 families with clinical diagnosis of autosomal recessive IRD (AR-IRD) excluding Usher syndrome was analyzed by whole exome sequencing and autozygosity mapping. Causative pathogenic variants were identified in 50 families (68.4%), 42% of which were novel. The most prevalent pathogenic variants were observed in ABCA4 (14%) and RPE65, CRB1 and CERKL (8% each). 26 variants (8 novel and 18 known) in 19 genes were identified in 26 families (14 missense substitutions, 5 deletions, 4 nonsense pathogenic variants and 3 splice site variants), with further allelic heterogeneity arising from different pathogenic variants in the same gene. The most common phenotype in our cohort is retinitis pigmentosa (23%) and cone rod dystrophy (23%) followed by Leber congenital amaurosis (19.2%). We report the association of new disease phenotypes. This research was carried out in Tunisian patients with IRD in order to delineate the genetic population architecture.


Mutations in the Spliceosome Component CWC27 Cause Retinal Degeneration with or without Additional Developmental Anomalies.

  • Mingchu Xu‎ et al.
  • American journal of human genetics‎
  • 2017‎

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Phenotypic Progression of Stargardt Disease in a Large Consanguineous Tunisian Family Harboring New ABCA4 Mutations.

  • Yousra Falfoul‎ et al.
  • Journal of ophthalmology‎
  • 2018‎

To assess the progression of Stargardt (STGD) disease over nine years in two branches of a large consanguineous Tunisian family. Initially, different phenotypes were observed with clinical intra- and interfamilial variations. At presentation, four different retinal phenotypes were observed. In phenotype 1, bull's eye maculopathy and slight alteration of photopic responses in full-field electroretinography were observed in the youngest child. In phenotype 2, macular atrophy and yellow white were observed in two brothers. In phenotype 3, diffuse macular, peripapillary, and peripheral RPE atrophy and hyperfluorescent dots were observed in two sisters. In phenotype 4, Stargardt disease-fundus flavimaculatus phenotype was observed in two cousins with later age of onset. After a progression of 9 years, all seven patients displayed the same phenotype 3 with advanced stage STGD and diffuse atrophy. WES and MLPA identified two ABCA4 mutations M1: c.[(?_4635)_(5714+?)dup; (?_6148)_(6479_+?) del] and M2: c.[2041C>T], p.[R681∗]. In one branch, the three affected patients had M1/M1 causal mutations and in the other branch the two affected patients had M1/M2 causal mutations. After 9-year follow-up, all patients showed the same phenotypic evolution, confirming the progressive nature of the disease. Genetic variations in the two branches made no difference to similar end-stage disease.


Altered expression of β-galactosidase-1-like protein 3 (Glb1l3) in the retinal pigment epithelium (RPE)-specific 65-kDa protein knock-out mouse model of Leber's congenital amaurosis.

  • Joane Le Carré‎ et al.
  • Molecular vision‎
  • 2011‎

In this study, we investigated the expression of the gene encoding β-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including β-galactosidase-1 (Glb1), β-galactosidase-1-like (Glb1l), and β-galactosidase-1-like protein 2 (Glb1l2).


Differential neuroglycan C expression during retinal degeneration in Rpe65-/- mice.

  • Pascal Escher‎ et al.
  • Molecular vision‎
  • 2008‎

An increased mRNA expression of the genes coding for the extracellular matrix proteins neuroglycan C (NGC), interphotoreceptor matrix proteoglycan 2 (IMPG2), and CD44 antigen (CD44) has been observed during retinal degeneration in mice with a targeted disruption of the Rpe65 gene (Rpe65-/- mouse). To validate these data, we analyzed this differential expression in more detail by characterizing retinal NGC mRNA isoform and protein expression during disease progression.


RAX and anophthalmia in humans: evidence of brain anomalies.

  • Hana Abouzeid‎ et al.
  • Molecular vision‎
  • 2012‎

To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations.


Retinal pigment epithelium protein of 65 kDA gene-linked retinal degeneration is not modulated by chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C/ chondroitin sulfate proteoglycan 5.

  • Sandra Cottet‎ et al.
  • Molecular vision‎
  • 2013‎

To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis.


Tgfbi/Bigh3 silencing activates ERK in mouse retina.

  • Nathalie Allaman-Pillet‎ et al.
  • Experimental eye research‎
  • 2015‎

BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.


Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness.

  • Isabelle Audo‎ et al.
  • American journal of human genetics‎
  • 2012‎

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: