Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Investigation of soluble and transmembrane CTLA-4 isoforms in serum and microvesicles.

  • Laura Esposito‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2014‎

Expression of the CTLA-4 gene is absolutely required for immune homeostasis, but aspects of its molecular nature remain undefined. In particular, the characterization of the soluble CTLA-4 (sCTLA-4) protein isoform generated by an alternatively spliced mRNA of CTLA4 lacking transmembrane-encoding exon 3 has been hindered by the difficulty in distinguishing it from the transmembrane isoform of CTLA-4, Tm-CTLA-4. In the current study, sCTLA-4 has been analyzed using novel mAbs and polyclonal Abs specific for its unique C-terminal amino acid sequence. We demonstrate that the sCTLA-4 protein is secreted at low levels following the activation of primary human CD4(+) T cells and is increased only rarely in the serum of autoimmune patients. Unexpectedly, during our studies aimed to define the kinetics of sCTLA-4 produced by activated human CD4(+) T cells, we discovered that Tm-CTLA-4 is associated with microvesicles produced by the activated cells. The functional roles of sCTLA-4 and microvesicle-associated Tm-CTLA-4 warrant further investigation, especially as they relate to the multiple mechanisms of action described for the more commonly studied cell-associated Tm-CTLA-4.


Delayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMC-specific IL-4Ralpha-deficient mice.

  • William G C Horsnell‎ et al.
  • PLoS pathogens‎
  • 2007‎

Interleukin 4 receptor alpha (IL-4Ralpha) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response-driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Ralpha pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Ralpha-deficient mice (SM-MHC(Cre)IL-4Ralpha(-/lox)) were generated and characterized to uncover any role for IL-4/IL-13 in this non-immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Ralpha was absent from alpha-actin-positive smooth muscle cells, while other cell types showed normal IL-4Ralpha expression, thus demonstrating efficient cell-type-specific deletion of the IL-4Ralpha gene. N. brasiliensis-infected SM-MHC(Cre)IL-4Ralpha(-/lox) mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Ralpha-responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions.


Distinct cell-specific control of autoimmunity and infection by FcgammaRIIb.

  • Rebecca J Brownlie‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

FcgammaRIIb is an inhibitory Fc receptor expressed on B cells and myeloid cells. It is important in controlling responses to infection, and reduced expression or function predisposes to autoimmunity. To determine if increased expression of FcgammaRIIb can modulate these processes, we created transgenic mice overexpressing FcgammaRIIb on B cells or macrophages. Overexpression of FcgammaRIIb on B cells reduced the immunoglobulin G component of T-dependent immune responses, led to early resolution of collagen-induced arthritis (CIA), and reduced spontaneous systemic lupus erythematosus (SLE). In contrast, overexpression on macrophages had no effect on immune responses, CIA, or SLE but increased mortality after Streptococcus pneumoniae infection. These results help define the role of FcgammaRIIb in immune responses, demonstrate the contrasting roles played by FcgammaRIIb on B cells and macrophages in the control of infection and autoimmunity, and emphasize the therapeutic potential for modulation of FcgammaRIIb expression on B cells in inflammatory and autoimmune disease.


Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2.

  • Marcin L Pekalski‎ et al.
  • JCI insight‎
  • 2017‎

The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here, by differential gene expression analysis followed by protein expression and functional studies, we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and, following activation, produce IL-8 (CXCL8), a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8-producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined, but we note that CR2 is the receptor for Epstein-Barr virus, which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease.


Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial.

  • Antony J Cutler‎ et al.
  • Wellcome open research‎
  • 2017‎

The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen.


Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus.

  • Damien J Downes‎ et al.
  • Nature genetics‎
  • 2021‎

The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.


Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases.

  • Ricardo C Ferreira‎ et al.
  • PLoS genetics‎
  • 2013‎

Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10⁻²²) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10⁻²²). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10⁻⁷). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant.


Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity.

  • Ricardo C Ferreira‎ et al.
  • Journal of autoimmunity‎
  • 2017‎

Identification of alterations in the cellular composition of the human immune system is key to understanding the autoimmune process. Recently, a subset of FOXP3+ cells with low CD25 expression was found to be increased in peripheral blood from systemic lupus erythematosus (SLE) patients, although its functional significance remains controversial. Here we find in comparisons with healthy donors that the frequency of FOXP3+ cells within CD127lowCD25low CD4+ T cells (here defined as CD25lowFOXP3+ T cells) is increased in patients affected by autoimmune disease of varying severity, from combined immunodeficiency with active autoimmunity, SLE to type 1 diabetes. We show that CD25lowFOXP3+ T cells share phenotypic features resembling conventional CD127lowCD25highFOXP3+ Tregs, including demethylation of the Treg-specific epigenetic control region in FOXP3, HELIOS expression, and lack of IL-2 production. As compared to conventional Tregs, more CD25lowFOXP3+HELIOS+ T cells are in cell cycle (33.0% vs 20.7% Ki-67+; P = 1.3 × 10-9) and express the late-stage inhibitory receptor PD-1 (67.2% vs 35.5%; P = 4.0 × 10-18), while having reduced expression of the early-stage inhibitory receptor CTLA-4, as well as other Treg markers, such as FOXP3 and CD15s. The number of CD25lowFOXP3+ T cells is correlated (P = 3.1 × 10-7) with the proportion of CD25highFOXP3+ T cells in cell cycle (Ki-67+). These findings suggest that CD25lowFOXP3+ T cells represent a subset of Tregs that are derived from CD25highFOXP3+ T cells, and are a peripheral marker of recent Treg expansion in response to an autoimmune reaction in tissues.


Chromosome contacts in activated T cells identify autoimmune disease candidate genes.

  • Oliver S Burren‎ et al.
  • Genome biology‎
  • 2017‎

Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, particularly CD4+ T cells. Linking such regulatory regions to gene promoters in disease-relevant cell contexts facilitates identification of candidate disease genes.


The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus.

  • João J Oliveira‎ et al.
  • Arthritis research & therapy‎
  • 2018‎

The molecular heterogeneity of autoimmune and inflammatory diseases has been one of the main obstacles to the development of safe and specific therapeutic options. Here, we evaluated the diagnostic and clinical value of a robust, inexpensive, immunoassay detecting the circulating soluble form of the monocyte-specific surface receptor sialic acid binding Ig-like lectin 1 (sSIGLEC-1).


The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function.

  • Kay D Gerold‎ et al.
  • Diabetes‎
  • 2011‎

CTLA4 gene variation associates with multiple autoimmune disorders, including type 1 diabetes. The CTLA4 susceptibility allele was found to generate decreased levels of mRNA encoding soluble CTLA-4 (sCTLA-4) relative to the full-length isoform, the functional consequence of which is as yet unknown. In this study, we investigated the contribution of sCTLA-4 to immune regulation with the aim to elucidate the functional basis of the disease association of CTLA4.


Whole-genome sequencing of a sporadic primary immunodeficiency cohort.

  • James E D Thaventhiran‎ et al.
  • Nature‎
  • 2020‎

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial.

  • John A Todd‎ et al.
  • PLoS medicine‎
  • 2016‎

Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs.


Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes.

  • Catherine C Robertson‎ et al.
  • Nature genetics‎
  • 2021‎

We report the largest and most diverse genetic study of type 1 diabetes (T1D) to date (61,427 participants), yielding 78 genome-wide-significant (P < 5 × 10-8) regions, including 36 that are new. We define credible sets of T1D-associated variants and show that they are enriched in immune-cell accessible chromatin, particularly CD4+ effector T cells. Using chromatin-accessibility profiling of CD4+ T cells from 115 individuals, we map chromatin-accessibility quantitative trait loci and identify five regions where T1D risk variants co-localize with chromatin-accessibility quantitative trait loci. We highlight rs72928038 in BACH2 as a candidate causal T1D variant leading to decreased enhancer accessibility and BACH2 expression in T cells. Finally, we prioritize potential drug targets by integrating genetic evidence, functional genomic maps and immune protein-protein interactions, identifying 12 genes implicated in T1D that have been targeted in clinical trials for autoimmune diseases. These findings provide an expanded genomic landscape for T1D.


Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and Fc gamma RII-mediated B cell suppression.

  • Elizabeth U Rudge‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Inhibitory receptors CD22, Fc gamma RII (CD32), CD72, and paired immunoglobulin-like receptor (PIR)-B are critically involved in negatively regulating the B cell immune response and in preventing autoimmunity. Here we show that interleukin 4 (IL-4) reduces expression of all four on activated B cells at the level of messenger RNA and protein. This reduced expression is dependent on continuous exposure to IL-4 and is mediated through Stat6. Coligation of Fc gamma RII to the B cell receptor (BCR) via intact IgG increases the B cell activation threshold and suppresses antigen presentation. IL-4 completely abolishes these negative regulatory effects of Fc gamma RII. CD22 coligation with the BCR also suppresses activation -- this suppression too is abolished by IL-4. Thus, IL-4 is likely to enhance the B cell immune response by releasing B cells from inhibitory receptor suppression. By this coordinate reduction in expression of inhibitory receptors, and release from CD22 and Fc gamma RII-mediated inhibition, IL-4 is likely to play a role in T cell help of B cells and the development of T helper cell type 2 responses. Conversely, B cell activation in the absence of IL-4 would be more difficult to achieve, contributing to the maintenance of B cell tolerance in the absence of T cell help.


Idd9.2 and Idd9.3 protective alleles function in CD4+ T-cells and nonlymphoid cells to prevent expansion of pathogenic islet-specific CD8+ T-cells.

  • Emma E Hamilton-Williams‎ et al.
  • Diabetes‎
  • 2010‎

Multiple type 1 diabetes susceptibility genes have now been identified in both humans and mice, yet mechanistic understanding of how they impact disease pathogenesis is still minimal. We have sought to dissect the cellular basis for how the highly protective mouse Idd9 region limits the expansion of autoreactive CD8(+) T-cells, a key cell type in destruction of the islets.


A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes.

  • Ricardo C Ferreira‎ et al.
  • Diabetes‎
  • 2014‎

Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β-inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14(+) monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D.


Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing.

  • Daniel B Rainbow‎ et al.
  • European journal of immunology‎
  • 2015‎

No abstract available


Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice.

  • Heather I Fraser‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.3. In this study, we define two additional Idd loci--Idd18.2 and Idd18.4--within the boundaries of this cluster of disease-associated genes. Idd18.2 is 1.31 Mb and contains 18 genes, including Ptpn22, which encodes a phosphatase that negatively regulates T and B cell signaling. The human ortholog of Ptpn22, PTPN22, is associated with numerous autoimmune diseases, including T1D. We, therefore, assessed Ptpn22 as a candidate for Idd18.2; resequencing of the NOD Ptpn22 allele revealed 183 single nucleotide polymorphisms with the C57BL/6J (B6) allele--6 exonic and 177 intronic. Functional studies showed higher expression of full-length Ptpn22 RNA and protein, and decreased TCR signaling in congenic strains with B6-derived Idd18.2 susceptibility alleles. The 953-kb Idd18.4 locus contains eight genes, including the candidate Cd2. The CD2 pathway is associated with the human autoimmune disease, multiple sclerosis, and mice with NOD-derived susceptibility alleles at Idd18.4 have lower CD2 expression on B cells. Furthermore, we observed that susceptibility alleles at Idd18.2 can mask the protection provided by Idd10/Cd101 or Idd18.1/Vav3 and Idd18.3. In summary, we describe two new T1D loci, Idd18.2 and Idd18.4, candidate genes within each region, and demonstrate the complex nature of genetic interactions underlying the development of T1D in the NOD mouse model.


Nippostrongylus-induced intestinal hypercontractility requires IL-4 receptor alpha-responsiveness by T cells in mice.

  • Saskia Schmidt‎ et al.
  • PloS one‎
  • 2012‎

Gut-dwelling helminthes induce potent IL-4 and IL-13 dominated type 2 T helper cell (T(H)2) immune responses, with IL-13 production being essential for Nippostrongylus brasiliensis expulsion. This T(H)2 response results in intestinal inflammation associated with local infiltration by T cells and macrophages. The resulting increased IL-4/IL-13 intestinal milieu drives goblet cell hyperplasia, alternative macrophage activation and smooth muscle cell hypercontraction. In this study we investigated how IL-4-promoted T cells contributed to the parasite induced effects in the intestine. This was achieved using pan T cell-specific IL-4 receptor alpha-deficient mice (iLck(cre)IL-4Rα(-/lox)) and IL-4Rα-responsive control mice. Global IL-4Rα(-/-) mice showed, as expected, impaired type 2 immunity to N. brasiliensis. Infected T cell-specific IL-4Rα-deficient mice showed comparable worm expulsion, goblet cell hyperplasia and IgE responses to control mice. However, impaired IL-4-promoted T(H)2 cells in T cell-specific IL-4Rα deficient mice led to strikingly reduced IL-4 production by mesenteric lymph node CD4(+) T cells and reduced intestinal IL-4 and IL-13 levels, compared to control mice. This reduced IL-4/IL-13 response was associated with an impaired IL-4/IL-13-mediated smooth muscle cell hypercontractility, similar to that seen in global IL-4Rα(-/-) mice. These results demonstrate that IL-4-promoted T cell responses are not required for the resolution of a primary N. brasiliensis infection. However, they do contribute significantly to an important physiological manifestation of helminth infection; namely intestinal smooth muscle cell-driven hypercontractility.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: