Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

  • Daisuke Kohno‎ et al.
  • Frontiers in neuroscience‎
  • 2016‎

The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation mainly occurs on non-POMC leptin-responding neurons and contributes to glucose responding. Endogenous sweet molecules including glucose may regulate energy homeostasis through sweet taste receptors on glucose-and leptin-responsive neurons in the ARC.


PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus.

  • Masanori Nakata‎ et al.
  • Neuroscience letters‎
  • 2004‎

Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates both insulin release from islets and insulin action in adipocytes. Therefore, this peptide is considered a regulator of glucose homeostasis. PACAP and its receptors are localized not only in the peripheral tissues but in the central nervous system. The present study examined whether PACAP regulates the feeding behavior and the activity of neurons in the hypothalamic arcuate nucleus (ARC), a feeding center. Food intake was measured in the PACAP knock-out mice. Cytosolic Ca2+ concentration ([Ca2+]i) in single neurons isolated from the ARC of rats was measured by fura-2 microfluorometry, followed by immunocytochemical staining with anti-NPY antiserum. PACAP knock-out mice showed a decrease in the intake of high carbohydrate, but not high fat, food. PACAP increased [Ca2+]i in NPY neurons of the ARC that are implicated in the feeding, particularly the carbohydrate ingestion. Agonists of PACAP receptors, PAC1-R and VPAC2-R, also increased [Ca2+]i. The present study, by demonstrating that PACAP directly reacts with the ARC NPY neurons to increase [Ca2+]i and that ingestion of the carbohydrate-rich food is reduced in PACAP-deficiency, suggests a facilitative role for PACAP in the carbohydrate intake.


Leptin suppresses ghrelin-induced activation of neuropeptide Y neurons in the arcuate nucleus via phosphatidylinositol 3-kinase- and phosphodiesterase 3-mediated pathway.

  • Daisuke Kohno‎ et al.
  • Endocrinology‎
  • 2007‎

Neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus (ARC) play a central role in stimulation of feeding. They sense and integrate peripheral and central signals, including ghrelin and leptin. However, the mechanisms of interaction of these hormones in NPY neurons are largely unknown. This study explored the interaction and underlying signaling cross talk between ghrelin and leptin in NPY neurons. Cytosolic Ca(2+) concentration ([Ca(2+)](i)) in single neurons isolated from ARC of adult rats was measured by fura-2 microfluorometry. Ghrelin increased [Ca(2+)](i) in 31% of ARC neurons. The [Ca(2+)](i) increases were inhibited by blockers of phospholipase C, adenylate cyclase, and protein kinase A. Ghrelin-induced [Ca(2+)](i) increases were suppressed by subsequent administration of leptin. Fifteen of 18 ghrelin-activated, leptin-suppressed neurons (83%) contained NPY. Leptin suppression of ghrelin responses was prevented by pretreatment with inhibitors of phosphatidylinositol 3-kinase and phosphodiesterase 3 (PDE3) but not MAPK. ATP-sensitive potassium channel inhibitors and activators did not prevent and mimic leptin suppression, respectively. Although leptin phosphorylated signal-transducer and activator of transcription 3 (STAT3) in NPY neurons, neither STAT3 inhibitor nor genetic STAT3 deletion altered leptin suppression of ghrelin responses. Furthermore, orexigenic effect of intracerebroventricular ghrelin in rats was counteracted by leptin in a PDE3-dependent manner. These findings indicate that ghrelin increases [Ca(2+)](i) via mechanisms depending on phospholipase C and adenylate cyclase-PKA pathways in ARC NPY neurons and that leptin counteracts ghrelin responses via a phosphatidylinositol 3-kinase-PDE3 pathway. This interaction may play an important role in regulating ARC NPY neuron activity and, thereby, feeding.


Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis.

  • Kevin W Williams‎ et al.
  • Cell metabolism‎
  • 2014‎

The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes remain unclear. Here we show that induction of the unfolded protein response transcription factor spliced X-box binding protein 1 (Xbp1s) in pro-opiomelanocortin (Pomc) neurons alone is sufficient to protect against diet-induced obesity as well as improve leptin and insulin sensitivity, even in the presence of strong activators of ER stress. We also demonstrate that constitutive expression of Xbp1s in Pomc neurons contributes to improved hepatic insulin sensitivity and suppression of endogenous glucose production. Notably, elevated Xbp1s levels in Pomc neurons also resulted in activation of the Xbp1s axis in the liver via a cell-nonautonomous mechanism. Together our results identify critical molecular mechanisms linking ER stress in arcuate Pomc neurons to acute leptin and insulin resistance as well as liver metabolism in diet-induced obesity and diabetes.


Galanin-like peptide and ghrelin increase cytosolic Ca2+ in neurons containing growth hormone-releasing hormone in the arcuate nucleus.

  • Motoki Kuramochi‎ et al.
  • Regulatory peptides‎
  • 2005‎

Galanin-like peptide (GALP), discovered in the porcine hypothalamus, is expressed predominantly in the arcuate nucleus (ARC), a feeding-controlling center. Intracerebroventricular injection of GALP has been shown to stimulate food intake in the rats. However, the mechanisms underlying the orexigenic effect of GALP are unknown. The present study aimed to determine the target neurons of GALP in the ARC. We investigated the effects of GALP on cytosolic free Ca2+ concentration ([Ca2+]i) in the neurons isolated from the rat ARC, followed by neurochemical identification of these neurons by immunocytochemistry using antisera against growth hormone-releasing hormone (GHRH), neuropeptide Y (NPY) and proopiomelanocortin (POMC), the peptides localized in the ARC. GALP at 10(-10) M increased [Ca2+]i in 11% of single neurons of the ARC, while ghrelin, an orexigenic and GH-releasing peptide, at 10(-10) M increased [Ca2+]i in 35% of the ARC neurons. Some of these GALP- and/or ghrelin-responsive neurons were proved to contain GHRH. In contrast, NPY- and POMC-containing neurons did not respond to GALP. These results indicate that GALP directly targets GHRH neurons, but not NPY and POMC neurons, and that ghrelin directly targets GHRH neurons in the ARC. The former action may be involved in the orexigenic effect of GALP and the latter in the GH-releasing and/or orexigenic effects ghrelin.


SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels.

  • Takayoshi Suga‎ et al.
  • Molecular metabolism‎
  • 2019‎

It is controversial whether sodium glucose transporter (SGLT) 2 inhibitors increase glucagon secretion via direct inhibition of SGLT2 in pancreatic α cells. The role of SGLT1 in α cells is also unclear. We aimed to elucidate these points that are important not only for basic research but also for clinical insight.


Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load.

  • Naoki Kuramoto‎ et al.
  • Scientific reports‎
  • 2021‎

Phosphatidylinositol 3-kinase (PI3K) plays an important role in protein metabolism and cell growth. We here show that mice (M-PDK1KO mice) with skeletal muscle-specific deficiency of 3'-phosphoinositide-dependent kinase 1 (PDK1), a key component of PI3K signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of mechanical load-induced muscle hypertrophy. Whereas mechanical load-induced changes in gene expression were not affected, the phosphorylation of ribosomal protein S6 kinase (S6K) and S6 induced by mechanical load was attenuated in skeletal muscle of M-PDK1KO mice, suggesting that PDK1 regulates muscle hypertrophy not through changes in gene expression but through stimulation of kinase cascades such as the S6K-S6 axis, which plays a key role in protein synthesis. Administration of the β2-adrenergic receptor (AR) agonist clenbuterol activated the S6K-S6 axis in skeletal muscle and induced muscle hypertrophy in mice. These effects of clenbuterol were attenuated in M-PDK1KO mice, and mechanical load-induced activation of the S6K-S6 axis and muscle hypertrophy were inhibited in mice with skeletal muscle-specific deficiency of β2-AR. Our results suggest that PDK1 regulates skeletal muscle mass under the static condition and that it contributes to mechanical load-induced muscle hypertrophy, at least in part by mediating signaling from β2-AR.


Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance.

  • Xavier Brenachot‎ et al.
  • Nature communications‎
  • 2017‎

Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-induced PTPR-γ expression. PTPR-γ loss-of-function lowers glycemia and insulinemia by enhancing insulin-stimulated suppression of endogenous glucose production. These phenotypes are rescued by re-expression of Ptprg only in liver of mice lacking Ptprg globally. Hepatic PTPR-γ overexpression that mimics levels found in obesity is sufficient to cause severe hepatic and systemic insulin resistance. We propose hepatic PTPR-γ as a link between obesity-induced inflammation and insulin resistance and as potential target for treatment of T2DM.


Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice.

  • Eri Wada‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2021‎

Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.


Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

  • Yusaku Iwasaki‎ et al.
  • PloS one‎
  • 2013‎

Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.


Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin.

  • Daisuke Kohno‎ et al.
  • Diabetes‎
  • 2003‎

Ghrelin is a newly discovered peptide that is released from the stomach and from neurons in the hypothalamic arcuate nucleus (ARC) and potently stimulates growth hormone release and food intake. Neuropeptide-Y (NPY) neurons in the ARC play an important role in the stimulation of food intake. The present study aimed to determine whether ghrelin directly activates NPY neurons and, if so, to explore its signaling mechanisms. Whether the neurons that respond to ghrelin could be regulated by orexin and leptin was also examined. We isolated single neurons from the ARC of rats and measured the cytosolic Ca(2+) concentration ([Ca(2+)](i)) with fura-2 fluorescence imaging. Ghrelin (10(-12) to 10(-8) mol/l) concentration-dependently increased [Ca(2+)](i), which occurred in 35% of the ARC neurons. Approximately 80% of these ghrelin-responsive neurons were proved to be NPY-containing by immunocytochemical staining, and 58% of them were glucose-sensitive neurons as judged by their responses to lowering glucose concentrations. The [Ca(2+)](i) responses to ghrelin were markedly attenuated by inhibitors of protein kinase A (PKA) but not protein kinase C and by a blocker of N-type but not L-type Ca(2+) channels. Orexin increased [Ca(2+)](i) and leptin attenuated ghrelin-induced [Ca(2+)](i) increases in the majority (80%) of ghrelin-responsive NPY neurons. These results demonstrate that ghrelin directly interacts with NPY neurons in the ARC to induce Ca(2+) signaling via PKA and N-type Ca(2+) channel-dependent mechanisms. The integration of stimulatory effects of ghrelin and orexin and inhibitory effect of leptin may play an important role in the regulation of the activity of NPY neurons and thereby feeding.


Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus.

  • Shinji Muroya‎ et al.
  • The European journal of neuroscience‎
  • 2004‎

Orexin-A and -B (hypocretin-1 and -2) have been implicated in the stimulation of feeding. Here we show the effector neurons and signaling mechanisms for the orexigenic action of orexins in rats. Immunohistochemical methods showed that orexin axon terminals contact with neuropeptide Y (NPY)- and proopiomelanocortin (POMC)-positive neurons in the arcuate nucleus (ARC) of the rats. Microinjection of orexins into the ARC markedly increased food intake. Orexins increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in the isolated neurons from the ARC, which were subsequently shown to be immunoreactive for NPY. The increases in [Ca(2+)](i) were inhibited by blockers of phospholipase C (PLC), protein kinase C (PKC) and Ca(2+) uptake into endoplasmic reticulum. The stimulation of food intake and increases in [Ca(2+)](i) in NPY neurons were greater with orexin-A than with orexin-B, indicative of involvement of the orexin-1 receptor (OX(1)R). In contrast, orexin-A and -B equipotently attenuated [Ca(2+)](i) oscillations and decreased [Ca(2+)](i) levels in POMC-containing neurons. These effects were counteracted by pertussis toxin, suggesting involvement of the orexin-2 receptor and Gi/Go subtypes of GTP-binding proteins. Orexins also decreased [Ca(2+)](i) levels in glucose-responsive neurons in the ventromedial hypothalamus (VMH), a satiety center. Leptin exerted opposite effects on these three classes of neurons. These results demonstrate that orexins directly regulate NPY, POMC and glucose-responsive neurons in the ARC and VMH, in a manner reciprocal to leptin. Orexin-A evokes Ca(2+) signaling in NPY neurons via OX(1)R-PLC-PKC and IP(3) pathways. These neural pathways and intracellular signaling mechanisms may play key roles in the orexigenic action of orexins.


Insulin suppresses ghrelin-induced calcium signaling in neuropeptide Y neurons of the hypothalamic arcuate nucleus.

  • Yuko Maejima‎ et al.
  • Aging‎
  • 2011‎

Neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus (ARC) play an important role in feeding regulation. Plasma levels of ghrelin and insulin show reciprocal dynamics before and after meals. We hypothesized that ghrelin and insulin also exert reciprocal effects on ARC NPY neurons. Cytosolic Ca²⁺ concentration ([Ca²⁺](i)) was measured by fura-2 microfluorometry in single neurons isolated from ARC of adult rats, followed by immunocytochemical identification of NPY neurons. Ghrelin at 10⁻¹⁰ M increased [Ca²⁺](i) in isolated ARC neurons, and co-administration of insulin concentration-dependently suppressed the ghrelin-induced [Ca²⁺](i) increases. Insulin at 10⁻¹⁶ M, 10⁻¹⁴ M, 10⁻¹² M and 10⁻¹⁰ M counteracted ghrelin action in 26%, 41%, 61% and 53% of ghrelin-responsive neurons, respectively, showing a maximal effect at 10⁻¹² M, the estimated postprandial concentration of insulin in the brain. The majority (>70%) of the ghrelin-activated insulin-inhibited neurons were shown to contain NPY. Double-immunohistochemistry revealed that 85% of NPY neurons in ARC express insulin receptors. These data demonstrate that insulin directly interacts with ARC NPY neurons and counteracts ghrelin action. Our results suggest that postprandial increase in plasma insulin/ghrelin ratio and insulin inhibition of ghrelin action on ARC NPY neurons cooperate to effectively inhibit the neuron activity and terminate feeding.


Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway.

  • Yuko Maejima‎ et al.
  • Cell metabolism‎
  • 2009‎

The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.


P110β in the ventromedial hypothalamus regulates glucose and energy metabolism.

  • Teppei Fujikawa‎ et al.
  • Experimental & molecular medicine‎
  • 2019‎

Phosphoinositide 3-kinase (PI3K) signaling in hypothalamic neurons integrates peripheral metabolic cues, including leptin and insulin, to coordinate systemic glucose and energy homeostasis. PI3K is composed of different subunits, each of which has several unique isoforms. However, the role of the PI3K subunits and isoforms in the ventromedial hypothalamus (VMH), a prominent site for the regulation of glucose and energy homeostasis, is unclear. Here we investigated the role of subunit p110β in steroidogenic factor-1 (SF-1) neurons of the VMH in the regulation of metabolism. Our data demonstrate that the deletion of p110β in SF-1 neurons disrupts glucose metabolism, rendering the mice insulin resistant. In addition, the deletion of p110β in SF-1 neurons leads to the whitening of brown adipose tissues and increased susceptibility to diet-induced obesity due to blunted energy expenditure. These results highlight a critical role for p110β in the regulation of glucose and energy homeostasis via VMH neurons.


5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis.

  • Yong Xu‎ et al.
  • Neuron‎
  • 2008‎

Drugs activating 5-hydroxytryptamine 2C receptors (5-HT2CRs) potently suppress appetite, but the underlying mechanisms for these effects are not fully understood. To tackle this issue, we generated mice with global 5-HT2CR deficiency (2C null) and mice with 5-HT2CRs re-expression only in pro-opiomelanocortin (POMC) neurons (2C/POMC mice). We show that 2C null mice predictably developed hyperphagia, hyperactivity, and obesity and showed attenuated responses to anorexigenic 5-HT drugs. Remarkably, all these deficiencies were normalized in 2C/POMC mice. These results demonstrate that 5-HT2CR expression solely in POMC neurons is sufficient to mediate effects of serotoninergic compounds on food intake. The findings also highlight the physiological relevance of the 5-HT2CR-melanocortin circuitry in the long-term regulation of energy balance.


Galanin-like peptide stimulates food intake via activation of neuropeptide Y neurons in the hypothalamic dorsomedial nucleus of the rat.

  • Motoki Kuramochi‎ et al.
  • Endocrinology‎
  • 2006‎

Galanin-like peptide (GALP), a 29-amino-acid neuropeptide, is located in the hypothalamic arcuate nucleus (ARC), binds to galanin receptor subtype 2, and induces food intake upon intracerebroventricular (icv) injection in rats. However, neural mechanisms underlying its orexigenic action remain unclear. We aimed to identify the nuclei and neuron species that mediate the food intake in response to icv GALP injection. Intracerebroventricular injection of GALP, as powerfully as that of neuropeptide Y (NYP), increased food intake for the initial 2 h. GALP injected focally into the dorsomedial nucleus (DMN), but not the ARC, lateral hypothalamus, or paraventricular nucleus (PVN), stimulated food intake for 2 h after injection. In contrast, galanin injected into the DMN had no effect. DMN-lesion rats that received icv GALP injection showed attenuated feeding compared with control rats. Intracerebroventricular GALP injection increased c-Fos expression in NPY-containing neurons in the DMN, but not the ARC. GALP increased the cytosolic calcium concentration ([Ca(2+)](i)) in NPY-immunoreactive neurons isolated from the DMN, but not the ARC. Furthermore, both anti-NPY IgG and NPY antagonists, when preinjected, counteracted the feeding induced by GALP injection. These data show that icv GALP injection induces a potent short-term stimulation of food intake mainly via activation of NPY-containing neurons in the DMN.


Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice.

  • Sho Matsui‎ et al.
  • Nature communications‎
  • 2018‎

Diet affects health through ingested calories and macronutrients, and macronutrient balance affects health span. The mechanisms regulating macronutrient-based diet choices are poorly understood. Previous studies had shown that NAD-dependent deacetylase sirtuin-1 (SIRT1) in part influences the health-promoting effects of caloric restriction by boosting fat use in peripheral tissues. Here, we show that neuronal SIRT1 shifts diet choice from sucrose to fat in mice, matching the peripheral metabolic shift. SIRT1-mediated suppression of simple sugar preference requires oxytocin signalling, and SIRT1 in oxytocin neurons drives this effect. The hepatokine FGF21 acts as an endocrine signal to oxytocin neurons, promoting neuronal activation and Oxt transcription and suppressing the simple sugar preference. SIRT1 promotes FGF21 signalling in oxytocin neurons and stimulates Oxt transcription through NRF2. Thus, neuronal SIRT1 contributes to the homeostatic regulation of macronutrient-based diet selection in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: