Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Involvement of SRF coactivator MKL2 in BDNF-mediated activation of the synaptic activity-responsive element in the Arc gene.

  • Keietsu Kikuchi‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

The expression of immediate early genes (IEGs) is thought to be an essential molecular basis of neuronal plasticity for higher brain function. Many IEGs contain serum response element in their transcriptional regulatory regions and their expression is controlled by serum response factor (SRF). SRF is known to play a role in concert with transcriptional cofactors. However, little is known about how SRF cofactors regulate IEG expression during the process of neuronal plasticity. We hypothesized that one of the SRF-regulated neuronal IEGs, activity-regulated cytoskeleton-associated protein (Arc; also termed Arg3.1), is regulated by an SRF coactivator, megakaryoblastic leukemia (MKL). To test this hypothesis, we initially investigated which binding site of the transcription factor or SRF cofactor contributes to brain-derived neurotrophic factor (BDNF)-induced Arc gene transcription in cultured cortical neurons using transfection and reporter assays. We found that BDNF caused robust induction of Arc gene transcription through a cAMP response element, binding site of myocyte enhancer factor 2, and binding site of SRF in an Arc enhancer, the synaptic activity-responsive element (SARE). Regardless of the requirement for the SRF-binding site, the binding site of a ternary complex factor, another SRF cofactor, did not affect BDNF-mediated Arc gene transcription. In contrast, chromatin immunoprecipitation revealed occupation of MKL at the SARE. Furthermore, knockdown of MKL2, but not MKL1, significantly decreased BDNF-mediated activation of the SARE. Taken together, these findings suggest a novel mechanism by which MKL2 controls the Arc SARE in response to BDNF stimulation.


A combinational treatment of carotenoids decreases Aβ secretion in human neurons via β-secretase inhibition.

  • Misato Sho‎ et al.
  • Neuroscience research‎
  • 2020‎

Alzheimer's disease (AD) is the most common cause of dementia and is characterized neuropathologically by the presence of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) peptides, major components of amyloid plaques and crucial pathogenic molecules in terms of the amyloid hypothesis, are derived from successive proteolytic processing of amyloid-β precursor protein (APP). In this study, we established a human neuronal culture system using induced pluripotent stem cells (iPSCs) to evaluate the possible effects of natural compounds on the amyloid phenotype. Unexpectedly, we found that combinational treatment of carotenoids, but not docosahexaenoic acid, significantly decreased Aβ secretion from iPSC-derived human cortical neurons. Importantly, the effects of the carotenoids resulted from specific inhibition of BACE1 activity and not from expression changes in APP or BACE1. Therefore, these results indicate a novel beneficial function of carotenoids in the anti-amyloidogenic processing of APP. Collectively, this study will shed light on neuronal protection by a novel mechanism during the pathogenesis of AD.


Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations.

  • Shio Mitsuzawa‎ et al.
  • Stem cell reports‎
  • 2021‎

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.


Generation of Stable Drosophila Ovarian Somatic Cell Lines Using the piggyBac System.

  • Chikara Takeuchi‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2022‎

Transposable elements (TEs) constitute a large proportion of the genome in multiple organisms. Therefore, anti-transposable element machineries are essential to maintain genomic integrity. PIWI-interacting RNAs (piRNAs) are a major force to repress TEs in Drosophila ovaries. Ovarian somatic cells (OSC), in which nuclear piRNA regulation is functional, have been used for research on piRNA pathway as a cell culture system to elucidate the molecular mechanisms underlying the piRNA pathway. Analysis of piRNA pathway using a reporter system to monitor the gene regulation or overexpression of specific genes would be a powerful approach. Here, we present the technical protocol to establish stable cell lines using the piggyBac system, adopted for OSCs. This easy, consistent, and timesaving protocol may accelerate research on the piRNA pathway.


Generation of a control human induced pluripotent stem cell line using the defective and persistent Sendai virus vector system.

  • Zhi Zhou‎ et al.
  • Stem cell research‎
  • 2021‎

The defective and persistent Sendai virus (SeVdp) vector system allows efficient generation of transgene-free induced pluripotent stem cells (iPSCs) from human somatic cells. By leveraging the system, here we report the generation of an iPSC line from somatic fibroblasts of a healthy control donner (female), named KEIOi002-A (also named YG-iPS). The control iPSC line would be a useful resource for stem cell research and regenerative medicine.


Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish.

  • Tsubasa Saeki‎ et al.
  • Regenerative therapy‎
  • 2022‎

Efficient induction of the otic placode, the developmental origin of the inner ear from human pluripotent stem cells (hPSCs), provides a robust platform for otic development and sensorineural hearing loss modelling. Nevertheless, there remains a limited capacity of otic lineage specification from hPSCs by stepwise differentiation methods, since the critical factors for successful otic cell differentiation have not been thoroughly investigated. In this study, we developed a novel differentiation system involving the use of a three-dimensional (3D) floating culture with signalling factors for generating otic cell lineages via stepwise differentiation of hPSCs.


A human induced pluripotent stem cell model from a patient with hereditary cerebral small vessel disease carrying a heterozygous R302Q mutation in HTRA1.

  • Emi Qian‎ et al.
  • Inflammation and regeneration‎
  • 2023‎

Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an inherited cerebral small vessel disease (CSVD) caused by biallelic mutations in the high-temperature requirement serine peptidase A1 (HTRA1) gene. Even heterozygous mutations in HTRA1 are recently revealed to cause cardinal clinical features of CSVD. Here, we report the first establishment of a human induced pluripotent stem cell (hiPSC) line from a patient with heterozygous HTRA1-related CSVD. Peripheral blood mononuclear cells (PBMCs) were reprogrammed by the transfection of episomal vectors encoding human OCT3/4 (POU5F1), SOX2, KLF4, L-MYC, LIN28, and a murine dominant-negative mutant of p53 (mp53DD). The established iPSCs had normal morphology as human pluripotent stem cells and normal karyotype (46XX). Moreover, we found that the HTRA1 missense mutation (c.905G>A, p.R302Q) was heterozygous. These iPSCs expressed pluripotency-related markers and had the potential to differentiate into all three germ layers in vitro. HTRA1 and the supposed disease-associated gene NOG were differentially expressed in the patient iPSCs at mRNA levels compared to those of control lines. The iPSC line would facilitate in vitro research for understanding the cellular pathomechanisms caused by the HTRA1 mutation including its dominant-negative effect.


Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET.

  • Sharif M Shaheen‎ et al.
  • Nucleic acids research‎
  • 2011‎

Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser.


Identification, expression and characterization of rat isoforms of the serum response factor (SRF) coactivator MKL1.

  • Mitsuru Ishikawa‎ et al.
  • FEBS open bio‎
  • 2013‎

Megakaryoblastic leukemia 1 (MKL1) is a member of the MKL family of serum response factor (SRF) coactivators. Here we have identified three rat MKL1 transcripts: two are homologues of mouse MKL1 transcripts, full-length MKL1 (FLMKL1) and basic, SAP, and coiled-coil domains (BSAC), the third is a novel transcript, MKL1-elongated derivative of yield (MELODY). These rat MKL1 transcripts are differentially expressed in a wide variety of tissues with highest levels in testis and brain. During brain development, these transcripts display differential patterns of expression. The FLMKL1 transcript encodes two isoforms that utilize distinct translation start sites. The longer form possesses three actin-binding RPXXXEL (RPEL) motifs and the shorter form, MKL1met only has two RPEL motifs. All four rat MKL1 isoforms, FLMKL1, BSAC, MKL1met and MELODY increased SRF-mediated transcription, but not CREB-mediated transcription. Accordingly, the differential expression of MKL1 isoforms may help fine-tune gene expression during brain development.


Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells.

  • Naoki Ichiyanagi‎ et al.
  • Stem cell reports‎
  • 2016‎

Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.


Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study.

  • Daisuke Ihara‎ et al.
  • Journal of biomedical optics‎
  • 2020‎

The diagnostic depth of photodynamic diagnosis (PDD) for gastric cancer with protoporphyrin IX (PpIX) is limited, which leads to missing intramucosal cancers in screening and surgery.


Human Astrocytes Model Derived from Induced Pluripotent Stem Cells.

  • Nicolas Leventoux‎ et al.
  • Cells‎
  • 2020‎

Induced pluripotent stem cell (iPSC)-based disease modeling has a great potential for uncovering the mechanisms of pathogenesis, especially in the case of neurodegenerative diseases where disease-susceptible cells can usually not be obtained from patients. So far, the iPSC-based modeling of neurodegenerative diseases has mainly focused on neurons because the protocols for generating astrocytes from iPSCs have not been fully established. The growing evidence of astrocytes' contribution to neurodegenerative diseases has underscored the lack of iPSC-derived astrocyte models. In the present study, we established a protocol to efficiently generate iPSC-derived astrocytes (iPasts), which were further characterized by RNA and protein expression profiles as well as functional assays. iPasts exhibited calcium dynamics and glutamate uptake activity comparable to human primary astrocytes. Moreover, when co-cultured with neurons, iPasts enhanced neuronal synaptic maturation. Our protocol can be used for modeling astrocyte-related disease phenotypes in vitro and further exploring the contribution of astrocytes to neurodegenerative diseases.


DCTN1 Binds to TDP-43 and Regulates TDP-43 Aggregation.

  • Manami Deshimaru‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

A common pathological hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis, is cytoplasmic mislocalization and aggregation of nuclear RNA-binding protein TDP-43. Perry disease, which displays inherited atypical parkinsonism, is a type of TDP-43 proteinopathy. The causative gene DCTN1 encodes the largest subunit of the dynactin complex. Dynactin associates with the microtubule-based motor cytoplasmic dynein and is required for dynein-mediated long-distance retrograde transport. Perry disease-linked missense mutations (e.g., p.G71A) reside within the CAP-Gly domain and impair the microtubule-binding abilities of DCTN1. However, molecular mechanisms by which such DCTN1 mutations cause TDP-43 proteinopathy remain unclear. We found that DCTN1 bound to TDP-43. Biochemical analysis using a panel of truncated mutants revealed that the DCTN1 CAP-Gly-basic supradomain, dynactin domain, and C-terminal region interacted with TDP-43, preferentially through its C-terminal region. Remarkably, the p.G71A mutation affected the TDP-43-interacting ability of DCTN1. Overexpression of DCTN1G71A, the dynactin-domain fragment, or C-terminal fragment, but not the CAP-Gly-basic fragment, induced cytoplasmic mislocalization and aggregation of TDP-43, suggesting functional modularity among TDP-43-interacting domains of DCTN1. We thus identified DCTN1 as a new player in TDP-43 cytoplasmic-nuclear transport, and showed that dysregulation of DCTN1-TDP-43 interactions triggers mislocalization and aggregation of TDP-43, thus providing insights into the pathological mechanisms of Perry disease and other TDP-43 proteinopathies.


In Vitro Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of PCDH15 and RELN.

  • Takaya Ishii‎ et al.
  • eNeuro‎
  • 2019‎

Bipolar disorder (BP) and schizophrenia (SCZ) are major psychiatric disorders, but the molecular mechanisms underlying the complicated pathologies of these disorders remain unclear. It is difficult to establish adequate in vitro models for pathological analysis because of the heterogeneity of these disorders. In the present study, to recapitulate the pathologies of these disorders in vitro, we established in vitro models by differentiating mature neurons from human induced pluripotent stem cells (hiPSCs) derived from BP and SCZ patient with contributive copy number variations, as follows: two BP patients with PCDH15 deletion and one SCZ patient with RELN deletion. Glutamatergic neurons and GABAergic neurons were induced from hiPSCs under optimized conditions. Both types of induced neurons from both hiPSCs exhibited similar phenotypes of MAP2 (microtubule-associated protein 2)-positive dendrite shortening and decreasing synapse numbers. Additionally, we analyzed isogenic PCDH15- or RELN-deleted cells. The dendrite and synapse phenotypes of isogenic neurons were partially similar to those of patient-derived neurons. These results suggest that the observed phenotypes are general phenotypes of psychiatric disorders, and our in vitro models using hiPSC-based technology may be suitable for analysis of the pathologies of psychiatric disorders.


Generation of D1-1 TALEN isogenic control cell line from Dravet syndrome patient iPSCs using TALEN-mediated editing of the SCN1A gene.

  • Yasuyoshi Tanaka‎ et al.
  • Stem cell research‎
  • 2018‎

Dravet syndrome (DS) is an infantile epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene encoding the α1 subunit of the voltage-gated sodium channel Nav1.1. As an in vitro model of this disease, we previously generated an induced pluripotent stem cell (iPSC) line from a patient with DS carrying a c.4933C>T (p.R1645*) substitution in SCN1A. Here, we describe developing a genome-edited control cell line from this DS iPSC line by substituting the point mutation with the wild-type residue. This artificial control iPSC line will be a powerful tool for research into the pathology of DS.


Intratracheal Administration of siRNA Dry Powder Targeting Vascular Endothelial Growth Factor Inhibits Lung Tumor Growth in Mice.

  • Kei Miwata‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2018‎

Inhalation therapy using small-interfering RNA (siRNA) is a potentially effective therapeutic strategy for lung cancer because of its high gene-silencing effects and sequence specificity. Previous studies reported that intratracheal administration of siRNA using pressurized metered dose inhalers or nebulizers could suppress tumor growth in murine lung metastatic models. Although dry powder inhalers are promising devices due to their low cost, good portability, and preservability, the anti-tumor effects of siRNA dry powder have not been elucidated. To evaluate the gene-silencing and anti-tumor effects of intratracheally delivered siRNA dry powder, vascular endothelial growth factor-specific siRNA (VEGF-siRNA) dry powder was administered intratracheally to mice with metastatic lung tumors consisting of B16F10 melanoma cells or Lewis lung carcinoma cells. A single intratracheal administration of VEGF-siRNA dry powder reduced VEGF levels in both bronchoalveolar lavage fluid and lung tumor tissue. Furthermore, repeated intratracheal administration of VEGF-siRNA dry powder suppressed the number of visible metastatic foci on the lung surface and tumor area in lung tissues. Taken together, intratracheal administration of siRNA dry powder could be a novel therapeutic strategy for lung cancer through the suppression of specific genes expressed in lung tumor tissue.


Expression of SOLOIST/MRTFB i4, a novel neuronal isoform of the mouse serum response factor coactivator myocardin-related transcription factor-B, negatively regulates dendritic complexity in cortical neurons.

  • Yuta Ishibashi‎ et al.
  • Journal of neurochemistry‎
  • 2021‎

Megakaryoblastic leukemia 2 (MKL2)/myocardin-related transcription factor-B (MRTFB), a serum response factor (SRF) coactivator, is an important regulator of gene expression and neuronal morphology. Here, we show that different mouse MRTFB splice isoforms, including a novel fourth MRTFB isoform named spliced neuronal long isoform of SRF transcriptional coactivator (SOLOIST)/MRTFB isoform 4 (MRTFB i4), play distinct roles in this process. SOLOIST/MRTFB i4 has a short exon that encodes 21 amino acid residues ahead of the first RPXXXEL (RPEL) motif in MRTFB isoform 3. Quantitative PCR revealed that SOLOIST/MRTFB i4 and isoform 1 were enriched in the forebrain and neurons, and up-regulated during brain development. Conversely, isoform 3 was detected in various tissues, including both neurons and astrocytes, and was down-regulated in the developing brain. Reporter assays supported the SRF-coactivator function of SOLOIST/MRTFB i4 as well as isoform 1. Acute expression of MRTFB isoform 1, but not isoform 3 or SOLOIST/MRTFB i4, in neuronal cells within 24 hr drastically increased endogenous immediate early gene [c-fos, egr1, and activity-regulated cytoskeleton-associated protein] expression, but not endogenous actinin α1, β-actin, gelsolin, or srf gene expression measured by qPCR. Over-expression of SOLOIST/MRTFB i4 reduced the dendritic complexity of cortical neurons, whereas over-expression of isoform 1 increased this complexity. Co-expression of isoform 1 and SOLOIST/MRTFB i4 in cortical neurons revealed that isoform 1 competitively counteracted down-regulation by SOLOIST/MRTFB i4. Our findings indicate that MRTFB isoforms have unique expression patterns and differential effects on gene expression and dendritic complexity, which contribute to shaping neuronal circuits, at least in part.


In Situ Absorption and Fluorescence Microspectroscopy Investigation of the Molecular Incorporation Process into Single Nanoporous Protein Crystals.

  • Takayuki Uwada‎ et al.
  • ACS omega‎
  • 2020‎

Protein crystals exhibit distinct three-dimensional structures, which contain well-ordered nanoporous solvent channels, providing a chemically heterogeneous environment. In this paper, the incorporation of various molecules into the solvent channels of native hen egg-white lysozyme crystals was demonstrated using fluorescent dyes, including acridine yellow G, rhodamine 6G, and eosin Y. The process was evaluated on the basis of absorption and fluorescence microspectroscopy at a single-crystal level. The molecular loading process was clearly visualized as a function of time, and it was determined that the protein crystals could act as nanoporous materials. It was found that the incorporation process is strongly dependent on the molecular charge, leading to heterogeneous molecular aggregation, which suggests host-guest interaction of protein crystals from the viewpoint of nanoporous materials.


miRNA-Based Rapid Differentiation of Purified Neurons from hPSCs Advancestowards Quick Screening for Neuronal Disease Phenotypes In Vitro.

  • Mitsuru Ishikawa‎ et al.
  • Cells‎
  • 2020‎

Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene (Ngn2), a proneural factor. While it has been established that Ngn2 can facilitate differentiation from pluripotent stem cells into neurons with high purity due to its neurogenic effect, a long or indefinite time is required for neuronal maturation with Ngn2 misexpression alone. With the present method, the cells maintained a high neuronal differentiation rate while exhibiting increased gene expression of neuronal maturation markers, spontaneous calcium oscillation, and high electrical activity with network bursts as assessed by a multipoint electrode system. Moreover, when applying this method to iPSCs from Alzheimer's disease (AD) patients with presenilin-1 (PS1) or presenilin-2 (PS2) mutations, cellular phenotypes such as increased amount of extracellular secretion of amyloid β42, abnormal oxygen consumption, and increased reactive oxygen species in the cells were observed in a shorter culture period than those previously reported. Therefore, it is strongly anticipated that the induction method combining Ngn2 and miR-9/9*-124 will enable more rapid and simple screening for various types of neuronal disease phenotypes and promote drug discovery.


Establishing an induced pluripotent stem cell line from neonatal common marmoset fibroblasts by an all-in-one episomal vector approach.

  • Sho Yoshimatsu‎ et al.
  • Stem cell research‎
  • 2021‎

Epstein-Barr virus (EBV)-based episomal vector system enables persistent transgene expression, which is advantageous for efficient derivation of transgene-free induced pluripotent stem cells (iPSCs) without viral transduction. Here, we report establishment of an iPSC line from somatic fibroblasts of a neonatal common marmoset monkey (marmoset; Callithrix jacchus) using an all-in-one episomal vector that we newly developed. The established iPSC line, named NM-iPS, showed standard characteristics of pluripotency such as pluripotency-related marker expression, three germ layer differentiation, and normal karyotype (2n = 46). The novel iPSC line would be a useful resource for stem cell research using non-human primates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: