Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Primary cilia are not calcium-responsive mechanosensors.

  • M Delling‎ et al.
  • Nature‎
  • 2016‎

Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium. This Ca(2+)-responsive mechanosensor hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers. Here we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. We developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca(2+) influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signalling.


Gbetagamma binding increases the open time of IKACh: kinetic evidence for multiple Gbetagamma binding sites.

  • J Nemec‎ et al.
  • Biophysical journal‎
  • 1999‎

IKACh is an inwardly rectifying potassium channel that plays an important role in the regulation of mammalian heart rate. IKACh is activated by direct interaction with Gbetagamma subunits of pertussis toxin-sensitive heterotrimeric G-proteins. The stoichiometry of the Gbetagamma/channel complex is currently unknown, and kinetic analysis of the channel behavior has led to conflicting conclusions. Here, we analyze the kinetics of the native IKACh channel in inside-out cardiomyocyte patches activated directly by Gbetagamma. We conclude that the channel has at least two open states and that binding of Gbetagamma prolongs its mean open time duration. These findings imply the existence of at least two binding sites on the channel complex for Gbetagamma. We also show that the duration of the channel opening is negatively correlated with the duration of subsequent channel closing, which further constrains the possible kinetic models. A simple qualitative model describing the kinetic behavior of IKACh is presented.


Localization and interaction of epitope-tagged GIRK1 and CIR inward rectifier K+ channel subunits.

  • M E Kennedy‎ et al.
  • Neuropharmacology‎
  • 1996‎

GIRK1 and CIR are G-protein activated inward rectifier K+ channel subunits that combine to form the heteromultimer IKACh, the G beta gamma-activated atrial K channel responsible for the vagal slowing of heart rate. Epitope-tagged channel subunits were constructed by the introduction of distinct six amino acid epitopes into the C-termini or putative extracellular domains of GIRK1 and CIR. Carboxyl-terminal tagged subunits were activated by purified G beta gamma subunits in inside-out patches when expressed in Cos cells. Interestingly, insertion of three amino acids into the putative extracellular domain of GIRK1 resulted in an inactive subunit that acted as a dominant negative subunit when coexpressed with wild type GIRK1 and CIR in Xenopus oocytes. The epitope-tagged CIR-AU1 subunit coimmunoprecipitated GIRK1-AU5 from metabolically labeled Cos cells. Immunofluorescence labeling of Cos cells localized GIRK1-AU5 to internal cytoskeletal structures that co-stained with antibodies against the intermediate filament protein, vimentin. CIR-AU1 localized primarily to the plasma membrane. Double immunofluorescence labeling showed that GIRK1-AU5 plasma membrane staining was detectable only when coexpressed with CIR-AU1.


Molecular determinants for subcellular localization of PSD-95 with an interacting K+ channel.

  • D B Arnold‎ et al.
  • Neuron‎
  • 1999‎

Ion channels and PSD-95 are colocalized in specific neuronal subcellular locations by an unknown mechanism. To investigate mechanisms of localization, we used biolistic techniques to express GFP-tagged PSD-95 (PSD-95:GFP) and the K(+)-selective channel Kv1.4 in slices of rat cortex. In pyramidal cells, PSD-95:GFP required a single PDZ domain and a region including the SH3 domain for localization to postsynaptic sites. When transfected alone, PSD-95:GFP was present in dendrites but absent from axons. When cotransfected with Kv1.4, PSD-95:GFP appeared in both axons and dendrites, while Kv1.4 was restricted to axons. When domains that mediate the interaction of Kv1.4 and PSD-95 were disrupted, Kv1.4 localized nonspecifically. Our results provide evidence that Kv1.4 itself may determine its subcellular location, while an associated MAGUK protein is a necessary but not sufficient cofactor.


Active nuclear import and export is independent of lumenal Ca2+ stores in intact mammalian cells.

  • C Strübing‎ et al.
  • The Journal of general physiology‎
  • 1999‎

The nuclear pore complex (NPC) mediates communication between the cytoplasm and nucleus in eukaryotic cells. Active transport of large polypeptides as well as passive diffusion of smaller (approximately 10 kD) macromolecules through the NPC can be inhibited by depletion of intracellular Ca2+ stores. However, the physiological relevance of this process for the regulation of nucleocytoplasmic trafficking is not yet clear. We expressed green fluorescent protein (GFP)-tagged glucocorticoid receptor (GR) and mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) to study the effect of Ca2+ store depletion on active transport in HM1 cells, a human embryonic kidney cell line stably transfected with the muscarinic M1 receptor. Dexamethasone-induced nuclear import of GR-GFP and anisomycin-induced nuclear export of GFP-MK2 was monitored by confocal microscopy. We found that store depletion by carbachol, thapsigargin or ionomycin had no effect on GR-GFP import, whereas pretreatment with 1,2-bis-(o-aminophenoxy) ethane-N,N,N', N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) attenuated import significantly. Export of GFP-MK2 was not influenced by any pretreatment. Moreover, carbachol stimulated GFP-MK2 translocation to the cytoplasm in the absence of anisomycin. These results demonstrate that Ca2+ store depletion in intact HM1 cells is not directly linked to the inhibition of active protein transport through the NPC. The inhibition of GR-GFP import but not GFP-MK2 export by BAPTA-AM presumably involves a depletion-independent mechanism that interferes with components of the nuclear import pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: