Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice.

  • Ignacio Alcalde‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8+ corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8+ corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people.


Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure.

  • Simon Bulley‎ et al.
  • eLife‎
  • 2018‎

Systemic blood pressure is determined, in part, by arterial smooth muscle cells (myocytes). Several Transient Receptor Potential (TRP) channels are proposed to be expressed in arterial myocytes, but it is unclear if these proteins control physiological blood pressure and contribute to hypertension in vivo. We generated the first inducible, smooth muscle-specific knockout mice for a TRP channel, namely for PKD2 (TRPP1), to investigate arterial myocyte and blood pressure regulation by this protein. Using this model, we show that intravascular pressure and α1-adrenoceptors activate PKD2 channels in arterial myocytes of different systemic organs. PKD2 channel activation in arterial myocytes leads to an inward Na+ current, membrane depolarization and vasoconstriction. Inducible, smooth muscle cell-specific PKD2 knockout lowers both physiological blood pressure and hypertension and prevents pathological arterial remodeling during hypertension. Thus, arterial myocyte PKD2 controls systemic blood pressure and targeting this TRP channel reduces high blood pressure.


The cold-sensing ion channel TRPM8 regulates central and peripheral clockwork and the circadian oscillations of body temperature.

  • Alfonso Reimúndez‎ et al.
  • Acta physiologica (Oxford, England)‎
  • 2023‎

Physiological functions in mammals show circadian oscillations, synchronized by daily cycles of light and temperature. Central and peripheral clocks participate in this regulation. Since the ion channel TRPM8 is a critical cold sensor, we investigated its role in circadian function.


TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins.

  • Victor Meseguer‎ et al.
  • Nature communications‎
  • 2014‎

Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.


Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits.

  • Purificación Ordás‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

The cold- and menthol-activated ion channel transient receptor potential channel subfamily M member 8 (TRPM8) is the principal detector of environmental cold in mammalian sensory nerve endings. Although it is mainly expressed in a subpopulation of peripheral sensory neurons, it has also been identified in non-neuronal tissues. Here, we show, by in situ hybridization (ISH) and by the analysis of transgenic reporter expression in two different reporter mouse strains, that TRPM8 is also expressed in the central nervous system. Although it is present at much lower levels than in peripheral sensory neurons, we found cells expressing TRPM8 in restricted areas of the brain, especially in the hypothalamus, septum, thalamic reticular nucleus, certain cortices and other limbic structures, as well as in some specific nuclei in the brainstem. Interestingly, positive fibers were also found traveling through the major limbic tracts, suggesting a role of TRPM8-expressing central neurons in multiple aspects of thermal regulation, including autonomic and behavioral thermoregulation. Additional ISH experiments in rat brain demonstrated a conserved pattern of expression of this ion channel between rodent species. We confirmed the functional activity of this channel in the mouse brain using electrophysiological patch-clamp recordings of septal neurons. These results open a new window in TRPM8 physiology, guiding further efforts to understand potential roles of this molecular sensor within the brain.


Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure.

  • Charles E MacKay‎ et al.
  • eLife‎
  • 2020‎

PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.


Genetic- and diet-induced ω-3 fatty acid enrichment enhances TRPV4-mediated vasodilation in mice.

  • Rebeca Caires‎ et al.
  • Cell reports‎
  • 2022‎

TRPV4 channel activation in endothelial cells leads to vasodilation, while impairment of TRPV4 activity is implicated in vascular dysfunction. Strategies that increase TRPV4 activity could enhance vasodilation and ameliorate vascular disorders. Here, we show that supplementation with eicosapentaenoic acid (EPA), an ω-3 polyunsaturated fatty acid known to have beneficial cardiovascular effects, increases TRPV4 activity in human endothelial cells of various vascular beds. Mice carrying the C. elegans FAT-1 enzyme, which converts ω-6 to ω-3 polyunsaturated fatty acids, display higher EPA content and increased TRPV4-mediated vasodilation in mesenteric arteries. Likewise, mice fed an EPA-enriched diet exhibit enhanced and prolonged TRPV4-dependent vasodilation in an endothelial cell-specific manner. We also show that EPA supplementation reduces TRPV4 desensitization, which contributes to the prolonged vasodilation. Neutralization of positive charges in the TRPV4 N terminus impairs the effect of EPA on channel desensitization. These findings highlight the beneficial effects of manipulating fatty acid content to enhance TRPV4-mediated vasodilation.


Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly.

  • Marilyn Scandaglia‎ et al.
  • Scientific reports‎
  • 2015‎

The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes.


TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response.

  • Avtar S Meena‎ et al.
  • Cell reports‎
  • 2022‎

Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6-/- mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury.


A plasma membrane-localized polycystin-1/polycystin-2 complex in endothelial cells elicits vasodilation.

  • Charles E MacKay‎ et al.
  • eLife‎
  • 2022‎

Polycystin-1 (PC-1, PKD1), a receptor-like protein expressed by the Pkd1 gene, is present in a wide variety of cell types, but its cellular location, signaling mechanisms, and physiological functions are poorly understood. Here, by studying tamoxifen-inducible, endothelial cell (EC)-specific Pkd1 knockout (Pkd1 ecKO) mice, we show that flow activates PC-1-mediated, Ca2+-dependent cation currents in ECs. EC-specific PC-1 knockout attenuates flow-mediated arterial hyperpolarization and vasodilation. PC-1-dependent vasodilation occurs over the entire functional shear stress range and via the activation of endothelial nitric oxide synthase (eNOS) and intermediate (IK)- and small (SK)-conductance Ca2+-activated K+ channels. EC-specific PC-1 knockout increases systemic blood pressure without altering kidney anatomy. PC-1 coimmunoprecipitates with polycystin-2 (PC-2, PKD2), a TRP polycystin channel, and clusters of both proteins locate in nanoscale proximity in the EC plasma membrane. Knockout of either PC-1 or PC-2 (Pkd2 ecKO mice) abolishes surface clusters of both PC-1 and PC-2 in ECs. Single knockout of PC-1 or PC-2 or double knockout of PC-1 and PC-2 (Pkd1/Pkd2 ecKO mice) similarly attenuates flow-mediated vasodilation. Flow stimulates nonselective cation currents in ECs that are similarly inhibited by either PC-1 or PC-2 knockout or by interference peptides corresponding to the C-terminus coiled-coil domains present in PC-1 or PC-2. In summary, we show that PC-1 regulates arterial contractility through the formation of an interdependent signaling complex with PC-2 in ECs. Flow stimulates PC-1/PC-2 clusters in the EC plasma membrane, leading to eNOS, IK channel, and SK channel activation, vasodilation, and a reduction in blood pressure.


A Zic2-regulated switch in a noncanonical Wnt/βcatenin pathway is essential for the formation of bilateral circuits.

  • Cruz Morenilla-Palao‎ et al.
  • Science advances‎
  • 2020‎

The Wnt pathway is involved in a wide array of biological processes during development and is deregulated in many pathological scenarios. In neurons, Wnt proteins promote both axon extension and repulsion, but the molecular mechanisms underlying these opposing axonal responses are unknown. Here, we show that Wnt5a is expressed at the optic chiasm midline and promotes the crossing of retinal axons by triggering an alternative Wnt pathway that depends on the accumulation of βcatenin but does not activate the canonical pathway. In ipsilateral neurons, the transcription factor Zic2 switches this alternative Wnt pathway by regulating the expression of a set of Wnt receptors and intracellular proteins. In combination with this alternative Wnt pathway, the asymmetric activation of EphB1 receptors at the midline phosphorylates βcatenin and elicits a repulsive response. This alternative Wnt pathway and its Zic2-triggered switch may operate in other contexts that require a two-way response to Wnt ligands.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: