Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Properties of local interactions and their potential value in complementing genome-wide association studies.

  • Wenhua Wei‎ et al.
  • PloS one‎
  • 2013‎

Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits.


Duplication and selection in the evolution of primate beta-defensin genes.

  • Colin A M Semple‎ et al.
  • Genome biology‎
  • 2003‎

Innate immunity is the first line of defense against microorganisms in vertebrates and acts by providing an initial barrier to microorganisms and triggering adaptive immune responses. Peptides such as beta-defensins are an important component of this defense, providing a broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several enveloped viruses. Beta-defensins are small cationic peptides that vary in their expression patterns and spectrum of pathogen specificity. Disruptions in beta-defensin function have been implicated in human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and evolution of human beta-defensins might form the basis for novel therapies. Here we use a combination of laboratory and computational techniques to characterize the main human beta-defensin locus on chromosome 8p22-p23.


Sequence-level mechanisms of human epigenome evolution.

  • James G D Prendergast‎ et al.
  • Genome biology and evolution‎
  • 2014‎

DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage.


The genomic signature of trait-associated variants.

  • Alida S D Kindt‎ et al.
  • BMC genomics‎
  • 2013‎

Genome-wide association studies have identified thousands of SNP variants associated with hundreds of phenotypes. For most associations the causal variants and the molecular mechanisms underlying pathogenesis remain unknown. Exploration of the underlying functional annotations of trait-associated loci has thrown some light on their potential roles in pathogenesis. However, there are some shortcomings of the methods used to date, which may undermine efforts to prioritize variants for further analyses. Here, we introduce and apply novel methods to rigorously identify annotation classes showing enrichment or depletion of trait-associated variants taking into account the underlying associations due to co-location of different functional annotations and linkage disequilibrium.


High-throughput analysis of epistasis in genome-wide association studies with BiForce.

  • Attila Gyenesei‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2012‎

Gene-gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS.


POCUS: mining genomic sequence annotation to predict disease genes.

  • Frances S Turner‎ et al.
  • Genome biology‎
  • 2003‎

Here we present POCUS (prioritization of candidate genes using statistics), a novel computational approach to prioritize candidate disease genes that is based on over-representation of functional annotation between loci for the same disease. We show that POCUS can provide high (up to 81-fold) enrichment of real disease genes in the candidate-gene shortlists it produces compared with the original large sets of positional candidates. In contrast to existing methods, POCUS can also suggest counterintuitive candidates.


Functional annotation of human long noncoding RNAs via molecular phenotyping.

  • Jordan A Ramilowski‎ et al.
  • Genome research‎
  • 2020‎

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci.

  • James G D Prendergast‎ et al.
  • Epigenetics & chromatin‎
  • 2012‎

Chromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).


BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies.

  • Attila Gyenesei‎ et al.
  • Nucleic acids research‎
  • 2012‎

Genome-wide association studies (GWAS) have discovered many loci associated with common disease and quantitative traits. However, most GWAS have not studied the gene-gene interactions (epistasis) that could be important in complex trait genetics. A major challenge in analysing epistasis in GWAS is the enormous computational demands of analysing billions of SNP combinations. Several methods have been developed recently to address this, some using computers equipped with particular graphical processing units, most restricted to binary disease traits and all poorly suited to general usage on the most widely used operating systems. We have developed the BiForce Toolbox to address the demand for high-throughput analysis of pairwise epistasis in GWAS of quantitative and disease traits across all commonly used computer systems. BiForce Toolbox is a stand-alone Java program that integrates bitwise computing with multithreaded parallelization and thus allows rapid full pairwise genome scans via a graphical user interface or the command line. Furthermore, BiForce Toolbox incorporates additional tests of interactions involving SNPs with significant marginal effects, potentially increasing the power of detection of epistasis. BiForce Toolbox is easy to use and has been applied in multiple studies of epistasis in large GWAS data sets, identifying interesting interaction signals and pathways.


Chromatin structure and evolution in the human genome.

  • James G D Prendergast‎ et al.
  • BMC evolutionary biology‎
  • 2007‎

Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time.


Sushi gets serious: the draft genome sequence of the pufferfish Fugu rubripes.

  • Martin S Taylor‎ et al.
  • Genome biology‎
  • 2002‎

The publication of the Fugu rubripes draft genome sequence will take this fish from culinary delicacy to potent tool in deciphering the mysteries of human genome function.


The complexity of selection at the major primate beta-defensin locus.

  • Colin A M Semple‎ et al.
  • BMC evolutionary biology‎
  • 2005‎

We have examined the evolution of the genes at the major human beta-defensin locus and the orthologous loci in a range of other primates and mouse. For the first time these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as the ancient past. We have used a combination of maximum likelihood based tests and a maximum parsimony based sliding window approach to give a detailed view of the varying modes of selection operating at this locus.


Heterotachy in mammalian promoter evolution.

  • Martin S Taylor‎ et al.
  • PLoS genetics‎
  • 2006‎

We have surveyed the evolutionary trends of mammalian promoters and upstream sequences, utilising large sets of experimentally supported transcription start sites (TSSs). With 30,969 well-defined TSSs from mouse and 26,341 from human, there are sufficient numbers to draw statistically meaningful conclusions and to consider differences between promoter types. Unlike previous smaller studies, we have considered the effects of insertions, deletions, and transposable elements as well as nucleotide substitutions. The rate of promoter evolution relative to that of control sequences has not been consistent between lineages nor within lineages over time. The most pronounced manifestation of this heterotachy is the increased rate of evolution in primate promoters. This increase is seen across different classes of mutation, including substitutions and micro-indel events. We investigated the relationship between promoter and coding sequence selective constraint and suggest that they are generally uncorrelated. This analysis also identified a small number of mouse promoters associated with the immune response that are under positive selection in rodents. We demonstrate significant differences in divergence between functional promoter categories and identify a category of promoters, not associated with conventional protein-coding genes, that has the highest rates of divergence across mammals. We find that evolutionary rates vary both on a fine scale within mammalian promoters and also between different functional classes of promoters. The discovery of heterotachy in promoter evolution, in particular the accelerated evolution of primate promoters, has important implications for our understanding of human evolution and for strategies to detect primate-specific regulatory elements.


Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes.

  • Nicki Tiffin‎ et al.
  • Nucleic acids research‎
  • 2006‎

Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most likely candidate disease genes from these gene sets. Here, we review seven independent computational disease gene prioritization methods, and then apply them in concert to the analysis of 9556 positional candidate genes for type 2 diabetes (T2D) and the related trait obesity. We generate and analyse a list of nine primary candidate genes for T2D genes and five for obesity. Two genes, LPL and BCKDHA, are common to these two sets. We also present a set of secondary candidates for T2D (94 genes) and for obesity (116 genes) with 58 genes in common to both diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: