Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Abeta, and Alzheimer's disease.

  • Minerva M Carrasquillo‎ et al.
  • PloS one‎
  • 2010‎

The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD).


Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.

  • Denise Harold‎ et al.
  • Nature genetics‎
  • 2009‎

We undertook a two-stage genome-wide association study (GWAS) of Alzheimer's disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 x 10(-157)) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 x 10(-9)) and 5' to the PICALM gene (rs3851179, P = 1.9 x 10(-8)). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimer's disease in the combined dataset (rs11136000, P = 8.5 x 10(-10), odds ratio = 0.86; rs3851179, P = 1.3 x 10(-9), odds ratio = 0.86).


Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer's disease.

  • James A R Nicoll‎ et al.
  • Brain : a journal of neurology‎
  • 2019‎

We performed a 15-year post-mortem neuropathological follow-up of patients in the first trial of amyloid-β immunotherapy for Alzheimer's disease. Twenty-two participants of a clinical trial of active amyloid-β42 immunization (AN1792, Elan Pharmaceuticals) or placebo were studied. Comprehensive post-mortem neuropathological assessments were performed from 4 months to 15 years after the trial. We analysed the relationships between the topographical distribution of amyloid-β removal from the cerebral cortex and tau pathology, cerebrovascular territories, plasma anti-AN1792 antibody titres and late cognitive status. Seventeen of 22 (77%) participants had Alzheimer's neuropathological change, whereas 5 of 22 (23%) had alternative causes for dementia (progressive supranuclear palsy = 1, Lewy body disease = 1, vascular brain injury = 1, and frontotemporal lobar degeneration = 2). Nineteen of the 22 participants had received the active agent, three the placebo. Fourteen of 16 (88%) patients with Alzheimer's disease receiving the active agent had evidence of plaque removal (very extensive removal = 5, intermediate = 4, very limited = 5, no removal = 2). Of particular note, two Alzheimer's patients who died 14 years after immunization had only very sparse or no detectable plaques in all regions examined. There was a significant inverse correlation between post-vaccination peripheral blood anti-AN1792 antibody titres and post-mortem plaque scores (ρ = - 0.664, P = 0.005). Cortical foci cleared of plaques contained less tau than did cortex with remaining plaques, but the overall distribution of tangles was extensive (Braak V/VI). In conclusion, patients with Alzheimer's disease actively immunized against amyloid-β can remain virtually plaque-free for 14 years. The extent of plaque removal is related to the immune response. This long duration of efficacy is important in support of active immunization protocols as therapy for, or potentially prevention of, neurodegeneration-associated protein accumulations. Inclusion of patients without Alzheimer's disease in Alzheimer's therapy trials is a problem for assessing the efficacy of treatment. Despite modification of Alzheimer's pathology, most patients had progressed to severe dementia, notably including the five with very extensive plaque removal, possibly due to continued tau propagation. Neuropathology follow-up of patients in therapeutic trials provides valuable information on the causes of dementia and effects of treatment.


New insights into the genetic etiology of Alzheimer's disease and related dementias.

  • Céline Bellenguez‎ et al.
  • Nature genetics‎
  • 2022‎

Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.


Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease.

  • Emily Baker‎ et al.
  • PloS one‎
  • 2019‎

Late onset Alzheimer's disease is the most common form of dementia for which about 30 susceptibility loci have been reported. The aim of the current study is to identify novel genes associated with Alzheimer's disease using the largest up-to-date reference single nucleotide polymorphism (SNP) panel, the most accurate imputation software and a novel gene-based analysis approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 million genotypes from 17,008 Alzheimer's cases and 37,154 controls. In addition to earlier reported genes, we detected three novel gene-wide significant loci PPARGC1A (p = 2.2 × 10-6), RORA (p = 7.4 × 10-7) and ZNF423 (p = 2.1 × 10-6). PPARGC1A and RORA are involved in circadian rhythm; circadian disturbances are one of the earliest symptoms of Alzheimer's disease. PPARGC1A is additionally linked to energy metabolism and the generation of amyloid beta plaques. RORA is involved in a variety of functions apart from circadian rhythm, such as cholesterol metabolism and inflammation. The ZNF423 gene resides in an Alzheimer's disease-specific protein network and is likely involved with centrosomes and DNA damage repair.


Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

  • Valentina Escott-Price‎ et al.
  • PloS one‎
  • 2014‎

Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.


Systemic infection modifies the neuroinflammatory response in late stage Alzheimer's disease.

  • Sonja Rakic‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer's disease. Animal models suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-mortem human study to determine whether systemic infection modifies the neuropathology and in particular, neuroinflammation, in the late-stage of the disease.Sections of cerebral cortex and underlying white matter from controls and Alzheimer's patients who died with or without a terminal systemic infection were immunolabelled and quantified for: (i) Αβ and phosphorylated-tau; (ii) the inflammation-related proteins Iba1, CD68, HLA-DR, FcγRs (CD64, CD32a, CD32b, CD16), CHIL3L1, IL4R and CCR2; and (iii) T-cell marker CD3. In Alzheimer's disease, the synaptic proteins synaptophysin and PSD-95 were quantified by ELISA, and the inflammatory proteins and mRNAs by MesoScale Discovery Multiplex Assays and qPCR, respectively.Systemic infection in Alzheimer's disease was associated with decreased CD16 (p = 0.027, grey matter) and CD68 (p = 0.015, white matter); increased CD64 (p = 0.017, white matter) as well as increased protein expression of IL6 (p = 0.047) and decreased IL5 (p = 0.007), IL7 (p = 0.002), IL12/IL23p40 (p = 0.001), IL15 (p = 0.008), IL16 (p < 0.001) and IL17A (p < 0.001). Increased expression of anti-inflammatory genes CHI3L1 (p = 0.012) and IL4R (p = 0.004) were detected in this group. T-cell recruitment to the brain was reduced when systemic infection was present. However, exposure to systemic infection did not modify the pathology. In Alzheimer's disease, CD68 (p = 0.026), CD64 (p = 0.002), CHI3L1 (p = 0.016), IL4R (p = 0.005) and CCR2 (p = 0.010) were increased independently of systemic infection.Our findings suggest that systemic infections modify neuroinflammatory processes in Alzheimer's disease. However, rather than promoting pro-inflammatory changes, as observed in experimental models, they seem to promote an anti-inflammatory, potentially immunosuppressive, environment in the human brain.


Neuroinflammation in dementia with Lewy bodies: a human post-mortem study.

  • Jay Amin‎ et al.
  • Translational psychiatry‎
  • 2020‎

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia, behind Alzheimer's disease (AD). It is now established that cerebral inflammation has a key role in the aetiology and progression of AD, but this has yet to be confirmed in DLB. We aimed to determine the neuroinflammatory profile in the cerebral cortex of a large cohort of DLB cases. Thirty post-mortem confirmed DLB cases and twenty-nine matched controls were immunolabelled (Brodmann area 21) and quantified for: neuropathology-αSYN, Aβ, P-tau; microglial phenotype-Iba1, HLA-DR, CD68, FcƴR (CD64, CD32a, CD32b, CD16); presence of T lymphocytes-CD3; and anti-inflammatory markers-IL4R, CHI3L1. Status spongiosis, as a marker of neuropil degeneration, was quantified using Haematoxylin and Eosin staining. We found no significant difference between groups in protein load for Iba1, HLA-DR, CD68, CD64, CD32b, IL4R, or CHI3L1, despite increased neuropathology in DLB. CD32a load was significantly lower, and CD16 load higher, in DLB compared with controls. There was no difference in status spongiosis between groups. Significantly more DLB cases than controls showed T-lymphocyte recruitment. Overall, we conclude that microglial activation is not a prominent feature of DLB, and that this may be associated with the relatively modest neuropil degeneration observed in DLB. Our findings, based on the largest post-mortem cohort to date exploring neuroinflammation in DLB, demonstrate a dissociation between protein deposition, neurodegeneration and microglial activation. The relative preservation of cortical structures in DLB suggests the dementia could be more amenable to potential therapies.


Peripheral immunophenotype in dementia with Lewy bodies and Alzheimer's disease: an observational clinical study.

  • Jay Amin‎ et al.
  • Journal of neurology, neurosurgery, and psychiatry‎
  • 2020‎

Inflammation plays a key role in the aetiology and progression of Alzheimer's disease (AD). However, the immunophenotype of the second most common neurodegenerative cause of dementia, dementia with Lewy bodies (DLB), remains unclear. To date there have been no studies examining peripheral inflammation in DLB using multiplex immunoassay and flow cytometry concomitantly. We hypothesised that, using blood biomarkers, DLB would show an increased proinflammatory profile compared with controls, and that there would be a distinct profile compared with AD.


Common variants in Alzheimer's disease and risk stratification by polygenic risk scores.

  • Itziar de Rojas‎ et al.
  • Nature communications‎
  • 2021‎

Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease.


Microglial motility in Alzheimer's disease and after Aβ42 immunotherapy: a human post-mortem study.

  • Diana K Franco-Bocanegra‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

Microglial function is highly dependent on cell motility, with baseline motility required for homeostatic surveillance activity and directed motility to migrate towards a source of injury. Experimental evidence suggests impaired microglial motility in Alzheimer's disease (AD) and therefore we have investigated whether the expression of proteins associated with motility is altered in AD and affected by the Aβ immunotherapy using post-mortem brain tissue of 32 controls, 44 AD cases, and 16 AD cases from our unique group of patients immunised against Aβ42 (iAD).Sections of brain were immunolabelled and quantified for (i) the motility-related microglial proteins Iba1, cofilin 1 (CFL1), coronin-1a (CORO1A) and P2RY12, and (ii) pan-Aβ, Aβ42 and phosphorylated tau (ptau). The neuroinflammatory environment was characterised using Meso Scale Discovery multiplex assays. The expression of all four motility-related proteins was unmodified in AD compared with controls, whereas Iba1 and P2RY12, the homeostatic markers, were increased in the iAD group compared with AD. Iba1 and P2RY12 showed significant positive correlations with Aβ in controls but not in the AD or iAD groups. Pro- and anti-inflammatory proteins were increased in AD, whereas immunotherapy appears to result in a slightly less pro-inflammatory environment.Our findings suggest that as Aβ appears during the ageing process, the homeostatic Iba1 and P2RY12 -positive microglia respond to Aβ, but this response is absent in AD. Aβ-immunisation promoted increased Iba1 and P2RY12 expression, likely reflecting increased baseline microglial motility but without restoring the profile observed in controls.


Core outcome measures for interventions to prevent or slow the progress of dementia for people living with mild to moderate dementia: Systematic review and consensus recommendations.

  • Lucy Webster‎ et al.
  • PloS one‎
  • 2017‎

There are no disease-modifying treatments for dementia. There is also no consensus on disease modifying outcomes. We aimed to produce the first evidence-based consensus on core outcome measures for trials of disease modification in mild-to-moderate dementia.


Alzheimer's disease polygenic risk score as a predictor of conversion from mild-cognitive impairment.

  • Sultan Chaudhury‎ et al.
  • Translational psychiatry‎
  • 2019‎

Mild-cognitive impairment (MCI) occurs in up to one-fifth of individuals over the age of 65, with approximately a third of MCI individuals converting to dementia in later life. There is a growing necessity for early identification for those at risk of dementia as pathological processes begin decades before onset of symptoms. A cohort of 122 individuals diagnosed with MCI and followed up for a 36-month period for conversion to late-onset Alzheimer's disease (LOAD) were genotyped on the NeuroChip array along with pathologically confirmed cases of LOAD and cognitively normal controls. Polygenic risk scores (PRS) for each individual were generated using PRSice-2, derived from summary statistics produced from the International Genomics of Alzheimer's Disease Project (IGAP) genome-wide association study. Predictability models for LOAD were developed incorporating the PRS with APOE SNPs (rs7412 and rs429358), age and gender. This model was subsequently applied to the MCI cohort to determine whether it could be used to predict conversion from MCI to LOAD. The PRS model for LOAD using area under the precision-recall curve (AUPRC) calculated a predictability for LOAD of 82.5%. When applied to the MCI cohort predictability for conversion from MCI to LOAD was 61.0%. Increases in average PRS scores across diagnosis group were observed with one-way ANOVA suggesting significant differences in PRS between the groups (p < 0.0001). This analysis suggests that the PRS model for LOAD can be used to identify individuals with MCI at risk of conversion to LOAD.


Psychological stress, cognitive decline and the development of dementia in amnestic mild cognitive impairment.

  • Rebecca Sussams‎ et al.
  • Scientific reports‎
  • 2020‎

To determine the relationship between psychological stress with cognitive outcomes in a multi-centre longitudinal study of people with amnestic mild cognitive impairment (aMCI) we assessed three parameters of psychological stress (Recent Life Changes Questionnaire (RLCQ); the Perceived Stress Scale (PSS) and salivary cortisol) and their relationship with rates of cognitive decline over an 18 month follow up period and conversion to dementia over a 5.5 year period. In 133 aMCI and 68 cognitively intact participants the PSS score was higher in the aMCI compared with control group but neither the RLCQ scores nor salivary cortisol measures were different between groups. In the aMCI group the RLCQ and the PSS showed no significant association with cognitive function at baseline, cognitive decline or with conversion rates to dementia but high salivary cortisol levels were associated with RLCQ scores and poorer cognitive function at baseline and lower rates of cognitive decline. No relationship was found between salivary cortisol levels and conversion rate to dementia. We conclude that psychological stress as measured by the RLCQ or PSS was not associated with adverse cognitive outcomes in an aMCI population and hypothesise that this may reflect diminished cortisol production to psychological stress as the disease progresses.


DOMINO-AD protocol: donepezil and memantine in moderate to severe Alzheimer's disease - a multicentre RCT.

  • Rob Jones‎ et al.
  • Trials‎
  • 2009‎

Alzheimer's disease (AD) is the commonest cause of dementia. Cholinesterase inhibitors, such as donepezil, are the drug class with the best evidence of efficacy, licensed for mild to moderate AD, while the glutamate antagonist memantine has been widely prescribed, often in the later stages of AD. Memantine is licensed for moderate to severe dementia in AD but is not recommended by the England and Wales National Institute for Health and Clinical Excellence. However, there is little evidence to guide clinicians as to what to prescribe as AD advances; in particular, what to do as the condition progresses from moderate to severe. Options include continuing cholinesterase inhibitors irrespective of decline, adding memantine to cholinesterase inhibitors, or prescribing memantine instead of cholinesterase inhibitors. The aim of this trial is to establish the most effective drug option for people with AD who are progressing from moderate to severe dementia despite treatment with donepezil.


Does insulin resistance influence neurodegeneration in non-diabetic Alzheimer's subjects?

  • Grazia Daniela Femminella‎ et al.
  • Alzheimer's research & therapy‎
  • 2021‎

Type 2 diabetes is a risk factor for Alzheimer's disease (AD), and AD brain shows impaired insulin signalling. The role of peripheral insulin resistance on AD aetiopathogenesis in non-diabetic patients is still debated. Here we evaluated the influence of insulin resistance on brain glucose metabolism, grey matter volume and white matter lesions (WMLs) in non-diabetic AD subjects.


Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's disease.

  • Henne Holstege‎ et al.
  • Nature genetics‎
  • 2022‎

Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-β precursor protein processing, amyloid-β aggregation, lipid metabolism and microglial function in AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: