Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 104 papers

Association of genetic variants in and promoter hypermethylation of CDH1 with gastric cancer: a meta-analysis.

  • Huiquan Jing‎ et al.
  • Medicine‎
  • 2014‎

Gastric cancer (GC) is a common cause of cancer-related death. The etiology and pathogenesis of GC remain unclear, with genetic and epigenetic factors playing an important role. Previous studies investigated the association of GC with many genetic variants in and promoter hypermethylation of E-cadherin gene (CDH1), with conflicting results reported.To clarify this inconsistency, we conducted updated meta-analyses to assess the association of genetic variants in and the promoter hypermethylation of CDH1 with GC, including C-160A (rs16260) and other less-studied genetic variants,Data sources were PubMed, Cochrane Library, Google Scholar, Web of Knowledge, and HuGE, a navigator for human genome epidemiology.Study eligibility criteria and participant details are as follows: studies were conducted on human subjects; outcomes of interest include GC; report of genotype data of individual genetic variants in (or methylation status of) CDH1 in participants with and without GC (or providing odds ratios [OR] and their variances).Study appraisal and synthesis methods included the use of OR as a measure of the association, calculated from random effects models in meta-analyses. We used I for the assessment of between-study heterogeneity, and publication bias was assessed using funnel plot and Egger test.A total of 33 studies from 30 published articles met the eligibility criteria and were included in our analyses. We found no association between C-160A and GC (OR = 0.88; 95% confidence interval [CI], 0.71-1.08; P = 0.215), assuming an additive model (reference allele C). C-160A was associated with cardia (OR = 0.21; 95% CI, 0.11-0.41; P = 2.60 × 10), intestinal (OR = 0.66; 95% CI, 0.49-0.90; P = 0.008), and diffuse GC (OR = 0.57; 95% CI, 0.40-0.82; P = 0.002). The association of C-160A with noncardia GC is of bottom line significance (OR = 0.65; 95% CI, 0.42-1.01; P = 0.054). Multiple other less-studied genetic variants in CDH1 also exhibited association with GC. Gene-based analysis indicated a significant cumulative association of genetic variants in CDH1 with GC (all Ps <10). Sensitivity analysis excluding studies not meeting Hardy-Weinberg equilibrium (HWE) yielded similar results. Analysis by ethnic groups revealed significant association of C-160A with cardia GC in both Asian and whites, significant association with noncardia GC only in Asians, and no significant association with intestinal GC in both ethnic groups. There was significant association of C160-A with diffuse GC in Asians (P = 0.011) but not in whites (P = 0.081). However, after excluding studies that violate HWE, this observed association is no longer significant (P = 0.126). We observed strong association of promoter hypermethylation of CDH1 with GC (OR = 12.23; 95% CI, 8.80-17.00; P = 1.42 × 10), suggesting that epigenetic regulation of CDH1 could play a critical role in the etiology of GC.Limitations of this study are as follows: we could not adjust for confounding factors; some meta-analyses were based on a small number of studies; sensitivity analysis was limited due to unavailability of data; we could not test publication bias for some meta-analyses due to small number of included studies.We found no significant association of the widely studied genetic variant C-160A, but identified some other genetic variants showing significant association with GC. Future studies with large sample sizes that control for confounding risk factors and/or intensively interrogate CpG sites in CDH1 are needed to validate the results found in this study and to explore additional epigenetic loci that affect GC risk.


Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages.

  • Moses T Bility‎ et al.
  • PLoS pathogens‎
  • 2014‎

The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.


Agonist antibody activates death receptor 6 downstream signaling involving TRADD recruitment.

  • Rui Hu‎ et al.
  • FEBS letters‎
  • 2014‎

Death receptor 6 (DR6) is a member of the death domain-containing receptors that belong to the TNFR superfamily. To date, the ligand for DR6 is still not clearly defined. Here, we developed a functional agonist monoclonal antibody (DQM3) against DR6, which bound to the first cysteine-rich domain. Importantly, DR6 signaling could be clearly activated by DQM3, which was dependent on its intracellular death domain. In addition, we demonstrated that the association between DR6 and TRADD was enhanced upon DQM3 stimulation and TRADD was involved in DR6-induced signaling activation. Taken together, our findings provide new insight into a novel mechanism by which DR6 induces downstream signaling in response to an agonist antibody.


Zeb2 recruits HDAC-NuRD to inhibit Notch and controls Schwann cell differentiation and remyelination.

  • Lai Man Natalie Wu‎ et al.
  • Nature neuroscience‎
  • 2016‎

The mechanisms that coordinate and balance a complex network of opposing regulators to control Schwann cell (SC) differentiation remain elusive. Here we demonstrate that zinc-finger E-box-binding homeobox 2 (Zeb2, also called Sip1) transcription factor is a critical intrinsic timer that controls the onset of SC differentiation by recruiting histone deacetylases HDAC 1 and 2 (HDAC1/2) and nucleosome remodeling and deacetylase complex (NuRD) co-repressor complexes in mice. Zeb2 deletion arrests SCs at an undifferentiated state during peripheral nerve development and inhibits remyelination after injury. Zeb2 antagonizes inhibitory effectors including Notch and Sox2. Importantly, genome-wide transcriptome analysis reveals a Zeb2 target gene encoding the Notch effector Hey2 as a potent inhibitor for Schwann cell differentiation. Strikingly, a genetic Zeb2 variant associated with Mowat-Wilson syndrome disrupts the interaction with HDAC1/2-NuRD and abolishes Zeb2 activity for SC differentiation. Therefore, Zeb2 controls SC maturation by recruiting HDAC1/2-NuRD complexes and inhibiting a Notch-Hey2 signaling axis, pointing to the critical role of HDAC1/2-NuRD activity in peripheral neuropathies caused by ZEB2 mutations.


Homologous recombination is a force in the evolution of canine distemper virus.

  • Chaowen Yuan‎ et al.
  • PloS one‎
  • 2017‎

Canine distemper virus (CDV) is the causative agent of canine distemper (CD) that is a highly contagious, lethal, multisystemic viral disease of receptive carnivores. The prevalence of CDV is a major concern in susceptible animals. Presently, it is unclear whether intragenic recombination can contribute to gene mutations and segment reassortment in the virus. In this study, 25 full-length CDV genome sequences were subjected to phylogenetic and recombinational analyses. The results of phylogenetic analysis, intragenic recombination, and nucleotide selection pressure indicated that mutation and recombination occurred in the six individual genes segment (H, F, P, N, L, M) of the CDV genome. The analysis also revealed pronounced genetic diversity in the CDV genome according to the geographically distinct lineages (genotypes), namely Asia-1, Asia-2, Asia-3, Europe, America-1, and America-2. The six recombination events were detected using SimPlot and RDP programs. The analysis of selection pressure demonstrated that a majority of the nucleotides in the CDV individual gene were under negative selection. Collectively, these data suggested that homologous recombination acts as a key force driving the genetic diversity and evolution of canine distemper virus.


Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8.

  • Corentine Marie‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming, implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest autism spectrum disorder (ASD) high-risk-associated genes. Herein, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin binding profile, combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects nonproliferative OPCs from apoptosis by chromatin closing and transcriptional repression of p53 Furthermore, Chd7 controls OPC differentiation through chromatin opening and transcriptional activation of key regulators, including Sox10, Nkx2.2, and Gpr17 However, Chd7 is dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD risk-associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease.


Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler.

  • Yu Chen‎ et al.
  • The Journal of cell biology‎
  • 2018‎

While nuclear compartmentalization is an essential feature of three-dimensional genome organization, no genomic method exists for measuring chromosome distances to defined nuclear structures. In this study, we describe TSA-Seq, a new mapping method capable of providing a "cytological ruler" for estimating mean chromosomal distances from nuclear speckles genome-wide and for predicting several Mbp chromosome trajectories between nuclear compartments without sophisticated computational modeling. Ensemble-averaged results in K562 cells reveal a clear nuclear lamina to speckle axis correlated with a striking spatial gradient in genome activity. This gradient represents a convolution of multiple spatially separated nuclear domains including two types of transcription "hot zones." Transcription hot zones protruding furthest into the nuclear interior and positioning deterministically very close to nuclear speckles have higher numbers of total genes, the most highly expressed genes, housekeeping genes, genes with low transcriptional pausing, and super-enhancers. Our results demonstrate the capability of TSA-Seq for genome-wide mapping of nuclear structure and suggest a new model for spatial organization of transcription and gene expression.


The Chromatin Environment Around Interneuron Genes in Oligodendrocyte Precursor Cells and Their Potential for Interneuron Reprograming.

  • Linda L Boshans‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural progenitor cells in the embryonic ganglionic eminences that also generate inhibitory neurons. They are ubiquitously distributed in the central nervous system, remain proliferative through life, and generate oligodendrocytes in both gray and white matter. OPCs exhibit some lineage plasticity, and attempts have been made to reprogram them into neurons, with varying degrees of success. However, little is known about how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and whether OPCs have a unique chromatin environment around neuronal genes that might contribute to their lineage plasticity. Our bioinformatic analysis of histone posttranslational modifications at interneuron genes in OPCs revealed that OPCs had significantly fewer bivalent and repressive histone marks at interneuron genes compared to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of active histone modifications at bivalently marked interneuron genes than other cell types, and this was correlated with higher expression levels of these genes in OPCs. Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other cell types lacked the histone posttranslational modifications examined. These genes had a moderately high level of expression, suggesting that the "no mark" interneuron genes could be in a transcriptionally "poised" or "transitional" state. Thus, our findings suggest that OPCs have a unique histone code at their interneuron genes that may obviate the need for erasure of repressive marks during their fate switch to inhibitory neurons.


Exogenous 2-(3,4-Dichlorophenoxy) triethylamine ameliorates the soil drought effect on nitrogen metabolism in maize during the pre-female inflorescence emergence stage.

  • Tenglong Xie‎ et al.
  • BMC plant biology‎
  • 2019‎

Nitrogen (N) metabolism plays an important role in plant drought tolerance. 2-(3,4-Dichlorophenoxy) triethylamine (DCPTA) regulates many aspects of plant development; however, the effects of DCPTA on soil drought tolerance are poorly understood, and the possible role of DCPTA on nitrogen metabolism has not yet been explored.


Repurposing HAMI3379 to Block GPR17 and Promote Rodent and Human Oligodendrocyte Differentiation.

  • Nicole Merten‎ et al.
  • Cell chemical biology‎
  • 2018‎

Identification of additional uses for existing drugs is a hot topic in drug discovery and a viable alternative to de novo drug development. HAMI3379 is known as an antagonist of the cysteinyl-leukotriene CysLT2 receptor, and was initially developed to treat cardiovascular and inflammatory disorders. In our study we identified HAMI3379 as an antagonist of the orphan G protein-coupled receptor GPR17. HAMI3379 inhibits signaling of recombinant human, rat, and mouse GPR17 across various cellular backgrounds, and of endogenous GPR17 in primary rodent oligodendrocytes. GPR17 blockade by HAMI3379 enhanced maturation of primary rat and mouse oligodendrocytes, but was without effect in oligodendrocytes from GPR17 knockout mice. In human oligodendrocytes prepared from inducible pluripotent stem cells, GPR17 is expressed and its activation impaired oligodendrocyte differentiation. HAMI3379, conversely, efficiently favored human oligodendrocyte differentiation. We propose that HAMI3379 holds promise for pharmacological exploitation of orphan GPR17 to enhance regenerative strategies for the promotion of remyelination in patients.


EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways.

  • Jiajia Wang‎ et al.
  • Science advances‎
  • 2020‎

Mutations in the polycomb repressive complex 2 (PRC2) can cause Weaver-like syndrome, wherein a patient cohort exhibits abnormal white matter; however, PRC2 functions in CNS myelination and regeneration remain elusive. We show here that H3K27me3, the PRC2 catalytic product, increases during oligodendrocyte maturation. Depletion of embryonic ectoderm development (EED), a core PRC2 subunit, reduces differentiation of oligodendrocyte progenitors (OPCs), and causes an OPC-to-astrocyte fate switch in a region-specific manner. Although dispensable for myelin maintenance, EED is critical for oligodendrocyte remyelination. Genomic occupancy and transcriptomic analyses indicate that EED establishes a chromatin landscape that selectively represses inhibitory WNT and bone morphogenetic protein (BMP) signaling, and senescence-associated programs. Blocking WNT or BMP pathways partially restores differentiation defects in EED-deficient OPCs. Thus, our findings reveal that EED/PRC2 is a crucial epigenetic programmer of CNS myelination and repair, while demonstrating a spatiotemporal-specific role of PRC2-mediated chromatin silencing in shaping oligodendrocyte identity and lineage plasticity.


A reciprocal regulatory loop between TAZ/YAP and G-protein Gαs regulates Schwann cell proliferation and myelination.

  • Yaqi Deng‎ et al.
  • Nature communications‎
  • 2017‎

Schwann cell (SC) myelination in the peripheral nervous system is essential for motor function, and uncontrolled SC proliferation occurs in cancer. Here, we show that a dual role for Hippo effectors TAZ and YAP in SC proliferation and myelination through modulating G-protein expression and interacting with SOX10, respectively. Developmentally regulated mutagenesis indicates that TAZ/YAP are critical for SC proliferation and differentiation in a stage-dependent manner. Genome-wide occupancy mapping and transcriptome profiling reveal that nuclear TAZ/YAP promote SC proliferation by activating cell cycle regulators, while targeting critical differentiation regulators in cooperation with SOX10 for myelination. We further identify that TAZ targets and represses Gnas, encoding Gαs-protein, which opposes TAZ/YAP activities to decelerate proliferation. Gnas deletion expands SC precursor pools and blocks peripheral myelination. Thus, the Hippo/TAZ/YAP and Gαs-protein feedback circuit functions as a fulcrum balancing SC proliferation and differentiation, providing insights into molecular programming of SC lineage progression and homeostasis.


Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis.

  • Qinjie Weng‎ et al.
  • Cell stem cell‎
  • 2019‎

The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stem-like state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis.


Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues.

  • Liguo Zhang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Prolonged detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and recurrence of PCR-positive tests have been widely reported in patients after recovery from COVID-19, but some of these patients do not appear to shed infectious virus. We investigated the possibility that SARS-CoV-2 RNAs can be reverse-transcribed and integrated into the DNA of human cells in culture and that transcription of the integrated sequences might account for some of the positive PCR tests seen in patients. In support of this hypothesis, we found that DNA copies of SARS-CoV-2 sequences can be integrated into the genome of infected human cells. We found target site duplications flanking the viral sequences and consensus LINE1 endonuclease recognition sequences at the integration sites, consistent with a LINE1 retrotransposon-mediated, target-primed reverse transcription and retroposition mechanism. We also found, in some patient-derived tissues, evidence suggesting that a large fraction of the viral sequences is transcribed from integrated DNA copies of viral sequences, generating viral-host chimeric transcripts. The integration and transcription of viral sequences may thus contribute to the detection of viral RNA by PCR in patients after infection and clinical recovery. Because we have detected only subgenomic sequences derived mainly from the 3' end of the viral genome integrated into the DNA of the host cell, infectious virus cannot be produced from the integrated subgenomic SARS-CoV-2 sequences.


p53 mediates target gene association with nuclear speckles for amplified RNA expression.

  • Katherine A Alexander‎ et al.
  • Molecular cell‎
  • 2021‎

Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.


Mendelian randomization integrating GWAS and eQTL data revealed genes pleiotropically associated with major depressive disorder.

  • Huarong Yang‎ et al.
  • Translational psychiatry‎
  • 2021‎

Previous genome-wide association studies (GWAS) have identified potential genetic variants associated with the risk of major depressive disorder (MDD), but the underlying biological interpretation remains largely unknown. We aimed to prioritize genes that were pleiotropically or potentially causally associated with MDD. We applied the summary data-based Mendelian randomization (SMR) method integrating GWAS and gene expression quantitative trait loci (eQTL) data in 13 brain regions to identify genes that were pleiotropically associated with MDD. In addition, we repeated the analysis by using the meta-analyzed version of the eQTL summary data in the brain (brain-eMeta). We identified multiple significant genes across different brain regions that may be involved in the pathogenesis of MDD. The prime-specific gene BTN3A2 (corresponding probe: ENSG00000186470.9) was the top hit showing pleiotropic association with MDD in 9 of the 13 brain regions and in brain-eMeta, after correction for multiple testing. Many of the identified genes are located in the human major histocompatibility complex (MHC) region on chromosome 6 and are mainly involved in the immune response. Our SMR analysis indicated that multiple genes showed pleiotropic association with MDD across the brain regions. These findings provided important leads to a better understanding of the mechanism of MDD and revealed potential therapeutic targets for the prevention and effective treatment of MDD.


Dihydroartemisinin Inhibits Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular AMD.

  • Xun Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Purpose: Choroidal neovascularization (CNV) is the main pathogenic process and a leading cause of severe vision loss in neovascular age-related macular degeneration (AMD). We investigated the antiangiogenic efficacy of dihydroartemisinin (DHA) in an experimental laser-induced CNV mouse model. Methods: After fluorescein angiography confirmed that CNV was induced by laser photocoagulation in C57BL/6J mice, DHA or vehicle was given by intragastric administration once a day. On day 6 and day 12, fluorescein angiography, optic coherence tomography, and flat-mounting analysis were performed to grade CNV leakage, measure CNV thickness and evaluate CNV areas, respectively. Immunofluorescence staining and Western blot analysis were performed to evaluate the expression of NF-κB, VEGF, and VEGFR2. To confirm the safety of intragastric DHA application, changes in retinal morphology and neural cell apoptosis were tested by histopathological examination and TUNEL assay, and retinal function was determined by electroretinogram (ERG). Results: Intragastric administration of DHA significantly suppressed CNV leakage and CNV formation in both thickness and area. Immunofluorescence showed that DHA suppressed VEGFR2 and NF-κB p65 expression in laser-induced lesions. Compared to the normal group, the protein expression of VEGF, VGFER2, NF-κB p65, and NF-κB1 p50 increased significantly in the vehicle group after laser photocoagulation, while it was profoundly inhibited by DHA treatment. In addition, histopathological examination, TUNEL analysis, and ERG test showed no obvious evidence of retinal toxicity caused by DHA. Conclusion: Systemic administration of DHA can effectively inhibit laser-induced CNV formation in mice, which might be due to the suppression of the classic NF-κB signaling pathway and downregulation of VEGFR2 and VEGF expression. The current results suggest that DHA could be a natural potential alternative therapeutic strategy for neovascular AMD.


Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater.

  • Liguo Zhang‎ et al.
  • Chemosphere‎
  • 2022‎

Corn starch processing wastewater (CSPW) is a high-strength organic wastewater and biological treatment is considered as the dominant process. The present work investigated the effects of pH on the bioenergy production and spatial succession of microbial community in an anaerobic baffled reactor (ABR) treating CSPW. The results showed that above 90.5% of COD removal and above 16.6 L d-1 of methane were achieved at the influent pHs of 8.0 and 7.0 under organic loading rate of 4.0 kg COD·m-3·L-1 condition. Further decreasing the influent pH to 6.0 resulted in the COD removal decreased to 89.7%. Besides, 9.2 L d-1 of hydrogen and 13.0 L d-1 of methane were obtained. There was significant difference in the volatile fatty acids profiles during the variation of pH. Illumina Miseq sequencing showed that Clostridium, Ethanoligenens, Megasphaera, Prevotella and Trichococcus with relative abundance of 2.1%∼28.1% were the dominant hydrogen-producing bacteria in C1. Methanogens (Methanothrix and Methanobacterium) dominated in the last three compartments. Function predicted analysis revealed that the abundance of metabolic-related gene families containing carbohydrate, amino acids and energy in the last three compartments were higher than that in C1. A deduced biodegradation model of CSPW in ABR revealed that the anaerobic sludge in C1 mainly produced hydrogen. Microbial population in C3 was responsible for COD removal and methane production. The redundancy analysis revealed that hydrogen production was highly correlated with some hydrogen-producing bacteria in C1, whereas methane production was positively correlated with microbial group in C2∼ C4.


Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures.

  • Nan Wang‎ et al.
  • Neuron‎
  • 2022‎

Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.


Gestational diabetes in mice induces hematopoietic memory that affects the long-term health of the offspring.

  • Vinothini Govindarajah‎ et al.
  • The Journal of clinical investigation‎
  • 2024‎

Gestational diabetes is a common medical complication of pregnancy that is associated with adverse perinatal outcomes and an increased risk of metabolic diseases and atherosclerosis in adult offspring. The mechanisms responsible for this delayed pathological transmission remain unknown. In mouse models, we found that the development of atherosclerosis in adult offspring born to diabetic pregnancy can be in part linked to hematopoietic alterations. Although they do not show any gross metabolic disruptions, the adult offspring maintain hematopoietic features associated with diabetes, indicating the acquisition of a lasting diabetic hematopoietic memory. We show that the induction of this hematopoietic memory during gestation relies on the activity of the advanced glycation end product receptor (AGER) and the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which lead to increased placental inflammation. In adult offspring, we find that this memory is associated with DNA methyltransferase 1 (DNMT1) upregulation and epigenetic changes in hematopoietic progenitors. Together, our results demonstrate that the hematopoietic system can acquire a lasting memory of gestational diabetes and that this memory constitutes a pathway connecting gestational health to adult pathologies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: