Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Helicobacter pylori Infection Aggravates Diet-induced Insulin Resistance in Association With Gut Microbiota of Mice.

  • Cong He‎ et al.
  • EBioMedicine‎
  • 2016‎

Emerging evidence suggests that Helicobacter pylori infection is associated with insulin resistance (IR) yet the underlying mechanisms are still obscure. The vital role of gut microbiota in triggering IR has been increasingly reported, however, no study has explored the correlation of gut microbiota and H. pylori-associated IR. Using H. pylori-infected mice model fed different diet structures, we demonstrated that H. pylori infection significantly aggravated high-fat diet (HFD)-induced metabolic disorders at the early stage, the extent of which was close to the effect of long-term HFD. Interestingly, we observed dynamic alterations in gut microbiota that were consistent with the changes in the metabolic phenotype induced by H. pylori and HFD. There may be an interaction among H. pylori, diet and gut microbiota, which dysregulates the host metabolic homeostasis, and treatment of H. pylori may be beneficial to the patients with impaired glucose tolerance in addition to diet control.


Phosphorylation and inactivation of PTEN at residues Ser380/Thr382/383 induced by Helicobacter pylori promotes gastric epithelial cell survival through PI3K/Akt pathway.

  • Zhen Yang‎ et al.
  • Oncotarget‎
  • 2015‎

Phosphorylation of PTEN at residues Ser380/Thr382/383 leads to loss of phosphatase activity and tumor suppressor function. Here, we found that phosphorylation of PTEN at residues Ser380/Thr382/383 was increased with gastric carcinogenesis, and more importantly, Helicobacter pylori was a trigger of this modification in chronic non-atrophic gastritis. H. pylori could phosphorylate and inactivate PTEN in vivo and in vitro, resulting in survival of gastric epithelial cells. Furthermore, stable expression of dominant-negative mutant PTEN or inhibition of Akt prevented the enhanced survival induced by H. pylori. These results indicate that PTEN phosphorylation at residues Ser380/Thr382/383 is a novel mechanism of PTEN inactivation in gastric carcinogenesis, and H. pylori triggers this modification, resulting in activation of the PI3K/Akt pathway and promotion of cell survival.


N-Acetylcysteine Reduces ROS-Mediated Oxidative DNA Damage and PI3K/Akt Pathway Activation Induced by Helicobacter pylori Infection.

  • Chuan Xie‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

H. pylori infection induces reactive oxygen species- (ROS-) related DNA damage and activates the PI3K/Akt pathway in gastric epithelial cells. N-Acetylcysteine (NAC) is known as an inhibitor of ROS; the role of NAC in H. pylori-related diseases is unclear.


Phylogeny of Chinese Allium Species in Section Daghestanica and Adaptive Evolution of Allium (Amaryllidaceae, Allioideae) Species Revealed by the Chloroplast Complete Genome.

  • Deng-Feng Xie‎ et al.
  • Frontiers in plant science‎
  • 2019‎

The genus Allium (Amaryllidaceae, Allioideae) is one of the largest monocotyledonous genera and it includes many economically important crops that are cultivated for consumption or medicinal uses. Recent advances in molecular phylogenetics have revolutionized our understanding of Allium taxonomy and evolution. However, the phylogenetic relationships in some Allium sections (such as the Allium section Daghestanica) and the genetic bases of adaptative evolution, remain poorly understood. Here, we newly assembled six chloroplast genomes from Chinese endemic species in Allium section Daghestanica and by combining these genomes with another 35 allied species, we performed a series of analyses including genome structure, GC content, species pairwise Ka/Ks ratios, and the SSR component, nucleotide diversity and codon usage. Positively selected genes (PSGs) were detected in the Allium lineage using the branch-site model. Comparison analysis of Bayesian and ML phylogeny on CCG (complete chloroplast genome), SCG (single copy genes) and CDS (coding DNA sequences) produced a well-resolved phylogeny of Allioideae plastid lineages, which illustrated several novel relationships with the section Daghestanica. In addition, six species in section Daghestanica showed highly conserved structures. The GC content and the GC3s content in Allioideae species exhibited lower values than studied non-Allioideae species, along with elevated pairwise Ka/Ks ratios. The rps2 gene was lost in all examined Allioideae species, and 10 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis, seven of them are associated with photosynthesis. Our study uncovered a new species relationship in section Daghestanica and suggested that the selective pressure has played an important role in Allium adaptation and evolution, these results will facilitate our further understanding of evolution and adaptation of species in the genus Allium.


Helicobacter pylori induces epithelial-mesenchymal transition in gastric carcinogenesis via the AKT/GSK3β signaling pathway.

  • Yaobin Ouyang‎ et al.
  • Oncology letters‎
  • 2021‎

Helicobacter pylori (H. pylori) is a main risk factor for gastric cancer (GC). Epithelial-mesenchymal transition (EMT) is involved in the development and progression of H. pylori-associated GC. However, the exact molecular mechanism of this process remains unclear. The AKT/GSK3β signaling pathway has been demonstrated to promote EMT in several types of cancer. The present study investigated whether H. pylori infection induced EMT, and promoted the development and metastasis of cancer in the normal gastric mucosa, and whether this process was dependent on AKT activation. The expression levels of the EMT-associated proteins, including E-cadherin and N-cadherin, were determined in 165 gastric mucosal samples of different disease stages by immunohistochemical analysis. The expression levels of E-cadherin, N-cadherin, AKT, phosphorylated (p-)AKT (Ser473), GSK3β and p-GSK3β (Ser9) were further determined in H. pylori-infected Mongolian gerbil gastric tissues and cells co-cultured with H. pylori by immunohistochemical analysis and western blotting. The results indicated that the expression levels of the epithelial marker E-cadherin were decreased, whereas the expression levels of the mesenchymal marker N-cadherin were increased during gastric carcinogenesis. Their expression levels were associated with H. pylori infection. Furthermore, H. pylori infection resulted in downregulation of E-cadherin expression and upregulation of N-cadherin expression in Mongolian gerbils and GES-1 cells. In addition, an investigation of the associated mechanism of action revealed that p-AKT (Ser473) and p-GSK3β (Ser9) were activated in GES-1 cells following co-culture with H. pylori. Furthermore, following pretreatment of the cells with the AKT inhibitor VIII, the expression levels of E-cadherin, N-cadherin, p-AKT and p-GSK3β did not show significant differences between GES-1 cells that were co-cultured with or without H. pylori. The levels of p-AKT and p-GSK3β were increased in H. pylori-infected Mongolian gerbils. In conclusion, the present study demonstrated that H. pylori infection activated AKT and resulted in the phosphorylation and inactivation of GSK3β, which in turn promoted early stage EMT. These effects were AKT-dependent. This mechanism may serve as a prerequisite for GC development.


Novel Surface Modification of ZnO QDs for Paclitaxel-Targeted Drug Delivery for Lung Cancer Treatment.

  • Chuan Xie‎ et al.
  • Dose-response : a publication of International Hormesis Society‎
  • 2020‎

Adipic dihydrazide and heparin were attached to ZnO quantum dots surface, and the ZnO-adipic dihydrazide-heparin nanocomplex was used as a drug delivery system to deliver paclitaxel for chemotherapy. The surface modification and the loading of paclitaxel were confirmed by Fourier transform infrared spectrum, featured by characteristic peaks from functional groups of adipic dihydrazide, heparin, and paclitaxel. The impacts of pH on the drug release were investigated, and the cytotoxicity studies were conducted with A549 cells. The pharmacokinetic study was conducted with male Wistar rats. Both in vitro and in vivo study indicated that ZnO-adipic dihydrazide-heparin-paclitaxel nanocomplex could deliver paclitaxel in a more controllable way, and it has the potential to be a high-efficiency drug delivery system for cancer treatment.


Vitamin D3 and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification.

  • Hung Chan‎ et al.
  • Autophagy‎
  • 2022‎

Clostridioides difficile infection (CDI) is a common cause of nosocomial diarrhea. TcdB is a major C. difficile exotoxin that activates macrophages to promote inflammation and epithelial damage. Lysosome impairment is a known trigger for inflammation. Herein, we hypothesize that TcdB could impair macrophage lysosomal function to mediate inflammation during CDI. Effects of TcdB on lysosomal function and the downstream pro-inflammatory SQSTM1/p62-NFKB (nuclear factor kappa B) signaling were assessed in cultured macrophages and in a murine CDI model. Protective effects of two lysosome activators (i.e., vitamin D3 and carbamazepine) were assessed. Results showed that TcdB inhibited CTNNB1/β-catenin activity to downregulate MITF (melanocyte inducing transcription factor) and its direct target genes encoding components of lysosomal membrane vacuolar-type ATPase, thereby suppressing lysosome acidification in macrophages. The resulting lysosomal dysfunction then impaired autophagic flux and activated SQSTM1-NFKB signaling to drive the expression of IL1B/IL-1β (interleukin 1 beta), IL8 and CXCL2 (chemokine (C-X-C motif) ligand 2). Restoring MITF function by enforced MITF expression or restoring lysosome acidification with 1α,25-dihydroxyvitamin D3 or carbamazepine suppressed pro-inflammatory cytokine expression in vitro. In mice, gavage with TcdB-hyperproducing C. difficile or injection of TcdB into ligated colon segments caused prominent MITF downregulation in macrophages. Vitamin D3 and carbamazepine lessened TcdB-induced lysosomal dysfunction, inflammation and histological damage. In conclusion, TcdB inhibits the CTNNB1-MITF axis to suppress lysosome acidification and activates the downstream SQSTM1-NFKB signaling in macrophages during CDI. Vitamin D3 and carbamazepine protect against CDI by restoring MITF expression and lysosomal function in mice.Abbreviations: ATP6V0B: ATPase H+ transporting V0 subunit b; ATP6V0C: ATPase H+ transporting V0 subunit c; ATP6V0E1: ATPase H+ transporting V0 subunit e1; ATP6V1H: ATPase H+ transporting V1 subunit H; CBZ: carbamazepine; CDI: C. difficile infection; CXCL: chemokine C-X-X motif ligand; IL: interleukin; LAMP1: lysosomal-associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; LEF: lymphoid enhancer binding factor 1; MITF: melanocyte inducing transcription factor; NFKB: nuclear factor kappa B; PMA: phorbol 12-myristate 13-acetate; TcdA: Clostridial toxin A; TcdB: Clostridial toxin B; TFE3: transcription factor E3; TFEB: transcription factor EB.


A positive feedback loop of the TAZ/β-catenin axis promotes Helicobacter pylori-associated gastric carcinogenesis.

  • Xinbo Xu‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Helicobacter pylori infection is the strongest known risk factor for gastric cancer. The Hippo signaling pathway controls organ size and maintains tissue homeostasis by coordinately regulating cell growth and proliferation. Here, we demonstrate the interactive role of TAZ, the transcriptional coactivator of the Hippo pathway, and beta-catenin in promoting the pathogenesis of H. pylori infection.


Discovery and Validation of Novel Methylation Markers in Helicobacter pylori-Associated Gastric Cancer.

  • Huan Wang‎ et al.
  • Disease markers‎
  • 2021‎

Previous studies have shown that abnormal methylation is an early key event in the pathogenesis of most human cancers, contributing to the development of tumors. However, little attention has been given to the potential of DNA methylation patterns as markers for Helicobacter pylori- (H. pylori-) associated gastric cancer (GC). In this study, an integrated analysis of DNA methylation and gene expression was conducted to identify some potential key epigenetic markers in H. pylori-associated GC. DNA methylation data of 28 H. pylori-positive and 168 H. pylori-negative GC samples were compared and analyzed. We also analyzed the gene expression data of 18 H. pylori-positive and 145 H. pylori-negative GC cases. Finally, the results were verified by in vitro and in vivo experiments. A total of 5609 differentially methylated regions associated with 2454 differentially methylated genes were identified. A total of 228 differentially expressed genes were identified from the gene expression data of H. pylori-positive and H. pylori-negative GC cases. The screened genes were analyzed for functional enrichment. Subsequently, we obtained 28 genes regulated by methylation through a Venn diagram, and we identified five genes (GSTO2, HUS1, INTS1, TMEM184A, and TMEM190) downregulated by hypermethylation. HUS1, GSTO2, and TMEM190 were expressed at lower levels in GC than in adjacent samples (P < 0.05). Moreover, H. pylori infection decreased HUS1, GSTO2, and TMEM190 expression in vitro and in vivo. Our study identified HUS1, GSTO2, and TMEM190 as novel methylation markers for H. pylori-associated GC.


Enhanced antitumor effect of biodegradable cationic heparin-polyethyleneimine nanogels delivering FILIP1LΔC103 gene combined with low-dose cisplatin on ovarian cancer.

  • Chuan Xie‎ et al.
  • Oncotarget‎
  • 2017‎

FILIP1LΔC103 (COOH terminal truncation mutant 1-790 of Filamin A Interacting Protein 1-Like) has been identified to hold therapeutic potential for suppressing tumor growth. Cisplatin (DDP) is commonly used as a first-line drug in the treatment for ovarian cancer. The usage of polymeric nanoparticles to deliver functional genes intraperitoneally holds much promise as an effective therapy for ovarian cancer. In this study, a recombinant plasmid expressing FILIP1LΔC103 (FILIP1LΔC103-p) was constructed, and HPEI nanogels were prepared to deliver FILIP1LΔC103-p into SKOV3 cells. The expression of FILIP1LΔC103 in vitro and in vivo was determined using RT-PCR and Western Blotting. Moreover, in vivo treatment experiments were conducted on nude mice bearing SKOV3 ovarian cancer. The mice were treated with 5% glucose, HPEI+E-p, HPEI+FILIP1LΔC103-p, DDP or HPEI+FILIP1LΔC103-p plus DDP, respectively. Tumor weights were evaluated throughout the treatment duration. The cell proliferation and apoptosis were evaluated by Ki-67 immunochemical staining and TUNEL assay respectively, and the anti-angiogenic effect was assessed by CD31 immunochemical staining and alginate-encapsulated tumor cell assay. FILIP1LΔC103-p could be efficiently transfected into SKOV3 cells by HPEI nanogels. The combination of HPEI+FILIP1LΔC103-p with DDP exerted enhanced antitumor activity compared with HPEI+FILIP1LΔC103-p or DDP alone. Significant reduction of tumor cells proliferation, augmentation of tumor cells apoptosis and suppression of angiogenesis were observed in the combination group compared with controls. Our results demonstrated synergistic antineoplastic activity of combined FILIP1LΔC103 and low-dose DDP with no apparent toxicity, indicating a potential application of the combined approach in the treatment of ovarian cancer.


Carnobacterium maltaromaticum boosts intestinal vitamin D production to suppress colorectal cancer in female mice.

  • Qing Li‎ et al.
  • Cancer cell‎
  • 2023‎

Carnobacterium maltaromaticum was found to be specifically depleted in female patients with colorectal cancer (CRC). Administration of C. maltaromaticum reduces intestinal tumor formation in two murine CRC models in a female-specific manner. Estrogen increases the attachment and colonization of C. maltaromaticum via increasing the colonic expression of SLC3A2 that binds to DD-CPase of this bacterium. Metabolomic and transcriptomic profiling unveils the increased gut abundance of vitamin D-related metabolites and the mucosal activation of vitamin D receptor (VDR) signaling in C. maltaromaticum-gavaged mice in a gut microbiome- and VDR-dependent manner. In vitro fermentation system confirms the metabolic cross-feeding of C. maltaromaticum with Faecalibacterium prausnitzii to convert C. maltaromaticum-produced 7-dehydrocholesterol into vitamin D for activating the host VDR signaling. Overall, C. maltaromaticum colonizes the gut in an estrogen-dependent manner and acts along with other microbes to augment the intestinal vitamin D production to activate the host VDR for suppressing CRC.


LOX-1 acts as an N6-methyladenosine-regulated receptor for Helicobacter pylori by binding to the bacterial catalase.

  • Judeng Zeng‎ et al.
  • Nature communications‎
  • 2024‎

The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.


Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway.

  • Nianshuang Li‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Helicobacter pylori (H. pylori) delivers oncoprotein CagA into gastric epithelial cells via the T4SS and drives activation of multiple oncogenic signalling pathways. YAP, a core effector of the Hippo tumour suppressor pathway, is frequently overexpressed in human cancers, suggesting its potential tumor-promoting role. Although CagA is a casual factor in H. pylori induced gastric carcinogenesis, the link between CagA and YAP pathway has not been identified. In this work, we investigated the regulation of oncogenic YAP pathway by H. pylori CagA.


A Phytogeographic Divide Along the 500 mm Isohyet in the Qinghai-Tibet Plateau: Insights From the Phylogeographic Evidence of Chinese Alliums (Amaryllidaceae).

  • MinJie Li‎ et al.
  • Frontiers in plant science‎
  • 2019‎

The Qinghai-Tibet Plateau (QTP) has been biogeographically divided into the eastern monsoonal and the western continental climatic zones along the 500 mm isohyet. However, this biogeographic hypothesis has been rarely tested using a phylogeographic approach. The members of the genus Allium subgenus Cyathophora coincidentally distribute across this biogeographical divide. Intriguingly, Allium fasciculatum of subgenus Amerallium co-occurs in the distribution range of subgenus Cyathophora. To illuminate the role of this biogeographic divide on the genetic divergence, we genotyped 466 individuals of 52 populations of subgenus Cyathophora and 110 individuals of 19 populations of A. fasciculatum using three chloroplast DNA fragments, whole nrITS and nine nuclear microsatellite loci, supplemented with the present environmental space and paleo-distribution modeling. Our phylogeographical evidence recovered the concordant east-west genetic breaks both for subgenus Cyathophora and A. fasciculatum along the 500 mm isohyet. The divergence time estimations and environmental niche differentiations suggested this east-west genetic breaks could have been triggered by the climatic-induced vicariance during the early Pleistocene. Noticeably, this split within subgenus Cyathophora could have been deepened by the morphological vicariance from the eastern umbel to the western spicate, while that within A. fasciculatum could have been obscured due to the pollen flows from the east to west caused by the postglacial expansion. The genetic structures and ecological niche modelings (ENMs) recovered the distinct responses to the Quaternary climatic oscillations for species constricted to different climatic zones, further highlighting the profound effect of the climatic differences and tectonic uplifts on the genetic diversification. Overall, our findings offer strong evidence for the existence of a biogeographic divide between the eastern monsoonal and the west continental climatic zones of the QTP nearly along the 500 mm isohyet.


MicroRNA-18a inhibits ovarian cancer growth via directly targeting TRIAP1 and IPMK.

  • Ping Liu‎ et al.
  • Oncology letters‎
  • 2017‎

The role of microRNA-18a (miRNA/miR-18a) as a tumor suppressor or promoter in a number of different types of cancer has been reported. However, to date, the expression and the effects of miR-18a in epithelial ovarian cancer (EOC) remain elusive. In the present study, the expression of miR-18a in patient EOC tissues and ovarian cancer cell lines was investigated using the reverse transcription-quantitative polymerase chain reaction. Luciferase assays and western blotting were performed to detect the potential direct targets of miR-18a. An A2780cp intraperitoneal mouse model, and Cell Counting Kit 8, flow cytometry and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays, were used to investigate the effect of miR-18a on tumor growth in vivo and in vitro. The results indicated that the expression of miR-18a was reduced in EOC tissue and in the investigated ovarian cancer cell lines compared with non-malignant (normal) ovarian tissues and the human ovarian epithelium cell line, respectively. Overexpression of miR-18a in the A2780s and A2780cp cell lines significantly induced cell cycle arrest and apoptosis. It was demonstrated that miR-18a directly targets tumor protein p53-regulating inhibitor of apoptosis gene 1 and inositol phosphate multikinase, hence regulating the expression of downstream targets. The A2780cp intraperitoneal mouse model was employed and the results indicated that miR-18a may inhibit A2780cp intraperitoneal tumor growth in vivo by inhibiting proliferation and inducing apoptosis. Together, the results of the present study demonstrated that miR-18a has a role as a tumor suppressor by inhibiting proliferation and inducing apoptosis. Assessment of miR-18a expression may provide a novel method for diagnosis and be a therapeutic target for EOC.


Phosphorylation of phosphatase and tensin homolog induced by Helicobacter pylori promotes cell invasion by activation of focal adhesion kinase.

  • Zhen Yang‎ et al.
  • Oncology letters‎
  • 2018‎

Phosphorylation of the phosphatase and tensin homolog (PTEN) tumor suppressor at Ser380/Thr382/Thr383 residues is a novel mechanism underlying PTEN inactivation in gastric carcinogenesis, which may be triggered by Helicobacter pylori infection. To investigate this further, the effect of H. pylori infection on PTEN phosphorylation and the subsequent activation of focal adhesion kinase (FAK), were evaluated in gastric tissue samples from Mongolian gerbils and in the human gastric epithelial mucosa cell line GES-1 using immunohistochemistry, western blotting and Transwell assays. The in vivo and in vitro results of the present study demonstrated that H. pylori infection induced the phosphorylation and inactivation of PTEN at Ser380/Thr382/383, and the subsequent phosphorylation and activation of FAK at Tyr397. Gastric epithelial cell invasion was also increased. Furthermore, stable expression of a dominant-negative PTEN mutant inhibited the enhanced FAK activation and cell invasion induced by H. pylori infection. These results suggest that the mechanism underlying H. pylori-induced carcinogenesis may involve promoting cell invasion through the phosphorylation of PTEN and the activation of FAK.


PTEN lipid phosphatase inactivation links the hippo and PI3K/Akt pathways to induce gastric tumorigenesis.

  • Wenting Xu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Phosphatase and tensin homolog (PTEN) is an important tumor suppressor gene, and its encoded protein has activities of both a protein phosphatase and a lipid phosphatase. However, the substitution effect of protein phosphatase activity remains unclear. PI3K/Akt is the most common pathway negatively regulated by PTEN. The Hippo and PI3K/Akt pathways have a joint effect in regulating cell proliferation and apoptosis. Therefore, how PTEN lipid phosphatase inactivation contributes to the occurrence and development of gastric cancer and the potential role of the Hippo and PI3K/Akt pathways in PTEN lipid phosphatase inactivation mediated gastric tumorigenesis remain to be explored.


Downregulation of tumor suppressor RACK1 by Helicobacter pylori infection promotes gastric carcinogenesis through the integrin β-1/NF-κB signaling pathway.

  • Yi Hu‎ et al.
  • Cancer letters‎
  • 2019‎

Receptor of activated protein kinase C 1 (RACK1) is downregulated in gastric cancer and is involved in modulating NF-κB signaling pathway activity. However, the underlying molecular mechanisms regulating RACK1 expression are unclear. In this study, we demonstrated that downregulated expression of RACK1 was observed in gastric cancer tissue compared to adjacent normal tissue and was correlated with poor prognosis in patients. Helicobacter pylori (H. pylori) infection downregulated RACK1 expression in concert with canonical NF-κB signaling pathway activation in vivo and in vitro. RACK1 overexpression suppressed NF-κB signaling pathway activation as well as the release of downstream proinflammatory cytokines. In addition, RACK1 downregulation increased integrin β-1 expression, while integrin β-1 silencing decreased NF-κB signaling activation. Moreover, H. pylori infection downregulated RACK1 but upregulated integrin β-1 expression at the precancerous lesion stages in human subjects. Our data indicate that H. pylori infection promotes the upregulation of integrin β-1 expression via downregulation of RACK1 expression, which subsequently leads to the elevated activation of the NF-κB signaling pathway, an essential step in H. pylori-induced carcinogenesis.


Synthesis, biological activities and docking studies of pleuromutilin derivatives with piperazinyl urea linkage.

  • Yuanyuan Zhang‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2021‎

Antibiotics resistance is becoming increasingly common, involving almost all antibiotics on the market. Diseases caused by drug resistant bacteria, such as MRSA, have high mortality and negatively affect public health. The development of new drugs would be an effective means of solving this problem. Modifications based on bioactive natural products could greatly shorten drug development time and improve success rate. Pleuromutilin, a natural product from the basidiomycete bacterial species, is a promising antibiotic candidate. In this study, a series of novel pleuromutilin derivatives possessing piperazinyl urea linkage were efficiently synthesised, and their antibacterial activities and bactericidal properties were evaluated via MIC, MBC and Time-kill kinetics assays. The results showed that all compounds exhibited potent activities against tested strains, especially MRSA strains with MIC values as low as 0.125 μg/mL; 8 times lower than that of marketed antibiotic Tiamulin. Docking studies indicate substituted piperazinyl urea derivatives could provide hydrogen bonds and initiate π-π stacking between molecules and surrounding residues.


Fabrication of biodegradable hollow microsphere composites made of polybutylene adipate co-terephthalate/polyvinylpyrrolidone for drug delivery and sustained release.

  • Chuan Xie‎ et al.
  • Materials today. Bio‎
  • 2023‎

Sustained drug release has attracted increasing interest in targeted drug therapy. However, existing methods of drug therapy suffer drug action time, large fluctuations in the effective concentration of the drug, and the risk of side effects. Here, a biodegradable composite of polybutylene adipate co-terephthalate/polyvinylpyrrolidone (PBAT/PVP) consisting of electrospun hollow microspheres as sustained-released drug carriers is presented. The as-prepared PBAT/PVP composites show faster degradation rate and drug (Erlotinib) release than that of PBAT. Furthermore, PBAT/PVP composites loaded with Erlotinib provide sustained release effect, thus achieving a better efficacy than that after the direct injection of erlotinib due to the fact that the composites allow a high drug concentration in the tumor for a longer period. Hence, this work provides a potential effective solution for clinical drug therapy and tissue engineering using drug microspheres with a sustained release.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: