Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons.

  • Amanda Laque‎ et al.
  • Molecular metabolism‎
  • 2015‎

Leptin modulates food reward via central leptin receptor (LepRb) expressing neurons. Food reward requires stimulation of midbrain dopamine neurons and is modulated by central leptin action, but the exact central mechanisms remain unclear. Stimulatory and inhibitory leptin actions on dopamine neurons have been reported, e.g. by indirect actions on orexin neurons or via direct innervation of dopamine neurons in the ventral tegmental area.


Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues.

  • Amanda Laque‎ et al.
  • Nature communications‎
  • 2019‎

Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress-rather than promote-relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is, in part, driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms.


NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain.

  • Vivek Mahadevan‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.


Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain.

  • Dongjin R Lee‎ et al.
  • eLife‎
  • 2022‎

The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.


Spatial organization of EphA2 at the cell-cell interface modulates trans-endocytosis of ephrinA1.

  • Adrienne C Greene‎ et al.
  • Biophysical journal‎
  • 2014‎

EphA2 is a receptor tyrosine kinase (RTK) that is sensitive to spatial and mechanical aspects of the cell's microenvironment. Misregulation of EphA2 occurs in many aggressive cancers. Although its juxtacrine signaling geometry (EphA2's cognate ligand ephrinA1 is expressed on the surface of an apposing cell) provides a mechanism by which the receptor may experience extracellular forces, this also renders the system challenging to decode. By depositing living cells on synthetic supported lipid membranes displaying ephrinA1, we have reconstituted key features of the juxtacrine EphA2-ephrinA1 signaling system while maintaining the ability to perturb the spatial and mechanical properties of the membrane-cell interface with precision. In addition, we developed a trans-endocytosis assay to monitor internalization of ephrinA1 from a supported membrane into the apposing cell using a quantitative three-dimensional fluorescence microscopy assay. Using this experimental platform to mimic a cell-cell junction, we found that the signaling complex is not efficiently internalized when lateral reorganization at the membrane-cell contact sites is physically hindered. This suggests that EphA2-ephrinA1 trans-endocytosis is sensitive to the mechanical properties of a cell's microenvironment and may have implications in physical aspects of tumor biology.


Linking drug and food addiction via compulsive appetite.

  • Amanda Laque‎ et al.
  • British journal of pharmacology‎
  • 2022‎

'Food addiction' is the subject of intense public and research interest. However, this nosology based on neurobehavioural similarities among obese individuals, patients with eating disorders and those with substance use disorders (drug addiction) remains controversial. We thus sought to determine which aspects of disordered eating are causally linked to preclinical models of drug addiction. We hypothesized that extensive drug histories, known to cause addiction-like brain changes and drug motivation in rats, would also cause addiction-like food motivation.


Distinct memory engrams in the infralimbic cortex of rats control opposing environmental actions on a learned behavior.

  • Nobuyoshi Suto‎ et al.
  • eLife‎
  • 2016‎

Conflicting evidence exists regarding the role of infralimbic cortex (IL) in the environmental control of appetitive behavior. Inhibition of IL, irrespective of its intrinsic neural activity, attenuates not only the ability of environmental cues predictive of reward availability to promote reward seeking, but also the ability of environmental cues predictive of reward omission to suppress this behavior. Here we report that such bidirectional behavioral modulation in rats is mediated by functionally distinct units of neurons (neural ensembles) that are concurrently localized within the same IL brain area but selectively reactive to different environmental cues. Ensemble-specific neural activity is thought to function as a memory engram representing a learned association between environment and behavior. Our findings establish the causal evidence for the concurrent existence of two distinct engrams within a single brain site, each mediating opposing environmental actions on a learned behavior.


Protein phosphatase magnesium-dependent 1A induces inflammation in rheumatoid arthritis.

  • Beomgu Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Rheumatoid arthritis (RA) is a highly inflammatory autoimmune disease. Although proinflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-6, play a key role in the pathogenesis of RA, the causes of chronic inflammation are not fully understood. Here, we report that protein phosphatase magnesium-dependent 1A (PPM1A) levels were increased in RA synovial fluid compared with osteoarthritis (OA) synovial fluid and positively correlated with TNF levels. In addition, PPM1A expression was increased in synovial tissue from RA patients and joint tissue from a mouse model of arthritis. Finally, extracellular PPM1A induced inflammation by stimulating macrophages to produce TNF through toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88) signaling pathway. Our findings suggest that extracellular PPM1A may contribute to the pathogenesis of RA by functioning as a damage-associated molecular pattern (DAMP) to induce inflammation.


Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension.

  • Mark Toshner‎ et al.
  • The European respiratory journal‎
  • 2022‎

Inflammation and dysregulated immunity are important in the development of pulmonary arterial hypertension (PAH). Compelling preclinical data supports the therapeutic blockade of interleukin-6 (IL-6) signalling.


Central mechanisms of adiposity in adult female mice with androgen excess.

  • Kazunari Nohara‎ et al.
  • Obesity (Silver Spring, Md.)‎
  • 2014‎

Androgen excess in women is associated with visceral adiposity. However, little is known on the mechanism through which androgen promotes visceral fat accumulation.


Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats.

  • Barbara E Hasek‎ et al.
  • Diabetes‎
  • 2013‎

Dietary methionine restriction (MR) produces an integrated series of biochemical and physiological responses that improve biomarkers of metabolic health, limit fat accretion, and enhance insulin sensitivity. Using transcriptional profiling to guide tissue-specific evaluations of molecular responses to MR, we report that liver and adipose tissue are the primary targets of a transcriptional program that remodeled lipid metabolism in each tissue. The MR diet produced a coordinated downregulation of lipogenic genes in the liver, resulting in a corresponding reduction in the capacity of the liver to synthesize and export lipid. In contrast, the transcriptional response in white adipose tissue (WAT) involved a depot-specific induction of lipogenic and oxidative genes and a commensurate increase in capacity to synthesize and oxidize fatty acids. These responses were accompanied by a significant change in adipocyte morphology, with the MR diet reducing cell size and increasing mitochondrial density across all depots. The coordinated transcriptional remodeling of lipid metabolism between liver and WAT by dietary MR produced an overall reduction in circulating and tissue lipids and provides a potential mechanism for the increase in metabolic flexibility and enhanced insulin sensitivity produced by the diet.


The interleukin-20 receptor axis in early rheumatoid arthritis: novel links between disease-associated autoantibodies and radiographic progression.

  • Tue Wenzel Kragstrup‎ et al.
  • Arthritis research & therapy‎
  • 2016‎

Rheumatoid arthritis (RA) is often characterized by the presence of rheumatoid factor, anti-citrullinated protein antibodies, and bone erosions. Current therapies can compromise immunity, leading to risk of infection. The interleukin-20 receptor (IL-20R) axis comprising IL-19, IL-20, and IL-24 and their shared receptors activates tissue homeostasis processes but not the immune system. Consequently, modulation of the IL-20R axis may not lead to immunosuppression, making it an interesting drug target. We evaluated the role of the IL-20R axis in RA and associations between plasma cytokine levels and clinical disease.


Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake.

  • Kavon Rezai-Zadeh‎ et al.
  • Molecular metabolism‎
  • 2014‎

Leptin responsive neurons play an important role in energy homeostasis, controlling specific autonomic, behavioral, and neuroendocrine functions. We have previously identified a population of leptin receptor (LepRb) expressing neurons within the dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) which are related to neuronal circuits that control brown adipose tissue (BAT) thermogenesis. Intra-DMH leptin injections also activate sympathetic outflow to BAT, but whether such effects are mediated directly via DMH/DHA LepRb neurons and whether this is physiologically relevant for whole body energy expenditure and body weight regulation has yet to be determined.


Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata.

  • Clive Wasserfall‎ et al.
  • Cell metabolism‎
  • 2017‎

The canonical notion that type 1 diabetes (T1D) results following a complete destruction of β cells has recently been questioned as small amounts of C-peptide are detectable in patients with long-standing disease. We analyzed protein and gene expression levels for proinsulin, insulin, C-peptide, and islet amyloid polypeptide within pancreatic tissues from T1D, autoantibody positive (Ab+), and control organs. Insulin and C-peptide levels were low to undetectable in extracts from the T1D cohort; however, proinsulin and INS mRNA were detected in the majority of T1D pancreata. Interestingly, heterogeneous nuclear RNA (hnRNA) for insulin and INS-IGF2, both originating from the INS promoter, were essentially undetectable in T1D pancreata, arguing for a silent INS promoter. Expression of PCSK1, a convertase responsible for proinsulin processing, was reduced in T1D pancreata, supportive of persistent proinsulin. These data implicate the existence of β cells enriched for inefficient insulin/C-peptide production in T1D patients, potentially less susceptible to autoimmune destruction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: