Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

A tethering complex dimer catalyzes trans-SNARE complex formation in intracellular membrane fusion.

  • Aditya Kulkarni‎ et al.
  • Bioarchitecture‎
  • 2012‎

SNARE complexes mediate membrane fusion in the endomembrane system. They consist of coiled-coil bundles of four helices designated as Qa, Qb, Qc and R. A critical intermediate in the fusion pathway is the trans-SNARE complex generated by the assembly of SNAREs residing in opposing membranes. Mechanistic details of trans-SNARE complex formation and topology in a physiological system remain largely unresolved. Our studies on native yeast vacuoles revealed that SNAREs alone are insufficient to form trans-SNARE complexes and that additional factors, potentially tethering complexes and Rab GTPases, are required for the process. Here we report a novel finding that a HOPS tethering complex dimer catalyzes Rab GTPase-dependent formation of a topologically preferred QbQcR-Qa trans-SNARE complex.


Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel.

  • Martin J Bayer‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Pore models of membrane fusion postulate that cylinders of integral membrane proteins can initiate a fusion pore after conformational rearrangement of pore subunits. In the fusion of yeast vacuoles, V-ATPase V0 sectors, which contain a central cylinder of membrane integral proteolipid subunits, associate to form a transcomplex that might resemble an intermediate postulated in some pore models. We tested the role of V0 sectors in vacuole fusion. V0 functions in fusion and proton translocation could be experimentally separated via the differential effects of mutations and inhibitory antibodies. Inactivation of the V0 subunit Vph1p blocked fusion in the terminal reaction stage that is independent of a proton gradient. Deltavph1 mutants were capable of docking and trans-SNARE pairing and of subsequent release of lumenal Ca2+, but they did not fuse. The Ca2+-releasing channel appears to be tightly coupled to V0 because inactivation of Vph1p by antibodies blocked Ca2+ release. Vph1 deletion on only one fusion partner sufficed to severely reduce fusion activity. The functional requirement for Vph1p correlates to V0 transcomplex formation in that both occur after docking and Ca2+ release. These observations establish V0 as a crucial factor in vacuole fusion acting downstream of trans-SNARE pairing.


CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study.

  • Anthony Shock‎ et al.
  • Arthritis research & therapy‎
  • 2015‎

CD40 ligand (CD40L) blockade has demonstrated efficacy in experimental autoimmune models. However, clinical trials of hu5c8, an anti-human CD40L IgG1 antibody, in systemic lupus erythematosus (SLE) were halted due to an increased incidence of thrombotic events. This study evaluated CDP7657, a high affinity PEGylated monovalent Fab' anti-CD40L antibody fragment, to assess whether an Fc-deficient molecule retains efficacy while avoiding the increased risk of thrombotic events observed with hu5c8.


WNT3A-loaded exosomes enable cartilage repair.

  • Bethan L Thomas‎ et al.
  • Journal of extracellular vesicles‎
  • 2021‎

Cartilage defects repair poorly. Recent genetic studies suggest that WNT3a may contribute to cartilage regeneration, however the dense, avascular cartilage extracellular matrix limits its penetration and signalling to chondrocytes. Extracellular vesicles actively penetrate intact cartilage. This study investigates the effect of delivering WNT3a into large cartilage defects in vivo using exosomes as a delivery vehicle. Exosomes were purified by ultracentrifugation from conditioned medium of either L-cells overexpressing WNT3a or control un-transduced L-cells, and characterized by electron microscopy, nanoparticle tracking analysis and marker profiling. WNT3a loaded on exosomes was quantified by western blotting and functionally characterized in vitro using the SUPER8TOPFlash reporter assay and other established readouts including proliferation and proteoglycan content. In vivo pathway activation was assessed using TCF/Lef:H2B-GFP reporter mice. Wnt3a loaded exosomes were injected into the knees of mice, in which large osteochondral defects were surgically generated. The degree of repair was histologically scored after 8 weeks. WNT3a was successfully loaded on exosomes and resulted in activation of WNT signalling in vitro. In vivo, recombinant WNT3a failed to activate WNT signalling in cartilage, whereas a single administration of WNT3a loaded exosomes activated canonical WNT signalling for at least one week, and eight weeks later, improved the repair of osteochondral defects. WNT3a assembled on exosomes, is efficiently delivered into cartilage and contributes to the healing of osteochondral defects.


A dynamin homolog promotes the transition from hemifusion to content mixing in intracellular membrane fusion.

  • Aditya Kulkarni‎ et al.
  • Traffic (Copenhagen, Denmark)‎
  • 2014‎

The convergence of the antagonistic reactions of membrane fusion and fission at the hemifusion/hemifission intermediate has generated a captivating enigma of whether Soluble N-ethylmaleimide sensitive factor Attachment Protein Receptor (SNAREs) and dynamin have unusual counter-functions in fission and fusion, respectively. SNARE-mediated fusion and dynamin-driven fission are fundamental membrane flux reactions known to occur during ubiquitous cellular communication events such as exocytosis, endocytosis and vesicle transport. Here we demonstrate the influence of the dynamin homolog Vps1 (Vacuolar protein sorting 1) on lipid mixing and content mixing properties of yeast vacuoles, and on the incorporation of SNAREs into fusogenic complexes. We propose a novel concept that Vps1, through its oligomerization and SNARE domain binding, promotes the hemifusion-content mixing transition in yeast vacuole fusion by increasing the number of trans-SNAREs.


A conformation-selective monoclonal antibody against a small molecule-stabilised signalling-deficient form of TNF.

  • Daniel J Lightwood‎ et al.
  • Nature communications‎
  • 2021‎

We have recently described the development of a series of small-molecule inhibitors of human tumour necrosis factor (TNF) that stabilise an open, asymmetric, signalling-deficient form of the soluble TNF trimer. Here, we describe the generation, characterisation, and utility of a monoclonal antibody that selectively binds with high affinity to the asymmetric TNF trimer-small molecule complex. The antibody helps to define the molecular dynamics of the apo TNF trimer, reveals the mode of action and specificity of the small molecule inhibitors, acts as a chaperone in solving the human TNF-TNFR1 complex crystal structure, and facilitates the measurement of small molecule target occupancy in complex biological samples. We believe this work defines a role for monoclonal antibodies as tools to facilitate the discovery and development of small-molecule inhibitors of protein-protein interactions.


Sequential analysis of trans-SNARE formation in intracellular membrane fusion.

  • Kannan Alpadi‎ et al.
  • PLoS biology‎
  • 2012‎

SNARE complexes are required for membrane fusion in the endomembrane system. They contain coiled-coil bundles of four helices, three (Q(a), Q(b), and Q(c)) from target (t)-SNAREs and one (R) from the vesicular (v)-SNARE. NSF/Sec18 disrupts these cis-SNARE complexes, allowing reassembly of their subunits into trans-SNARE complexes and subsequent fusion. Studying these reactions in native yeast vacuoles, we found that NSF/Sec18 activates the vacuolar cis-SNARE complex by selectively displacing the vacuolar Q(a) SNARE, leaving behind a Q(bc)R subcomplex. This subcomplex serves as an acceptor for a Q(a) SNARE from the opposite membrane, leading to Q(a)-Q(bc)R trans-complexes. Activity tests of vacuoles with diagnostic distributions of inactivating mutations over the two fusion partners confirm that this distribution accounts for a major share of the fusion activity. The persistence of the Q(bc)R cis-complex and the formation of the Q(a)-Q(bc)R trans-complex are both sensitive to the Rab-GTPase inhibitor, GDI, and to mutations in the vacuolar tether complex, HOPS (HOmotypic fusion and vacuolar Protein Sorting complex). This suggests that the vacuolar Rab-GTPase, Ypt7, and HOPS restrict cis-SNARE disassembly and thereby bias trans-SNARE assembly into a preferred topology.


Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion.

  • Kannan Alpadi‎ et al.
  • Nature communications‎
  • 2013‎

The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.


Risk of QT prolongation and torsade de pointes associated with exposure to hydroxyzine: re-evaluation of an established drug.

  • Anne-Françoise Schlit‎ et al.
  • Pharmacology research & perspectives‎
  • 2017‎

Several noncardiac drugs have been linked to cardiac safety concerns, highlighting the importance of post-marketing surveillance and continued evaluation of the benefit-risk of long-established drugs. Here, we examine the risk of QT prolongation and/or torsade de pointes (TdP) associated with the use of hydroxyzine, a first generation sedating antihistamine. We have used a combined methodological approach to re-evaluate the cardiac safety profile of hydroxyzine, including: (1) a full review of the sponsor pharmacovigilance safety database to examine real-world data on the risk of QT prolongation and/or TdP associated with hydroxyzine use and (2) nonclinical electrophysiological studies to examine concentration-dependent effects of hydroxyzine on a range of human cardiac ion channels. Based on a review of pharmacovigilance data between 14th December 1955 and 1st August 2016, we identified 59 reports of QT prolongation and/or TdP potentially linked to hydroxyzine use. Aside from intentional overdose, all cases involved underlying medical conditions or concomitant medications that constituted at least 1 additional risk factor for such events. The combination of cardiovascular disorders plus concomitant treatment of drugs known to induce arrhythmia was identified as the greatest combined risk factor. Parallel patch-clamp studies demonstrated hydroxyzine concentration-dependent inhibition of several human cardiac ion channels, including the ether-a-go-go-related gene (hERG) potassium ion channels. Results from this analysis support the listing of hydroxyzine as a drug with "conditional risk of TdP" and are in line with recommendations to limit hydroxyzine use in patients with known underlying risk factors for QT prolongation and/or TdP.


Small molecules that inhibit TNF signalling by stabilising an asymmetric form of the trimer.

  • James O'Connell‎ et al.
  • Nature communications‎
  • 2019‎

Tumour necrosis factor (TNF) is a cytokine belonging to a family of trimeric proteins; it has been shown to be a key mediator in autoimmune diseases such as rheumatoid arthritis and Crohn's disease. While TNF is the target of several successful biologic drugs, attempts to design small molecule therapies directed to this cytokine have not led to approved products. Here we report the discovery of potent small molecule inhibitors of TNF that stabilise an asymmetrical form of the soluble TNF trimer, compromising signalling and inhibiting the functions of TNF in vitro and in vivo. This discovery paves the way for a class of small molecule drugs capable of modulating TNF function by stabilising a naturally sampled, receptor-incompetent conformation of TNF. Furthermore, this approach may prove to be a more general mechanism for inhibiting protein-protein interactions.


Engagement in Human-Agent Interaction: An Overview.

  • Catharine Oertel‎ et al.
  • Frontiers in robotics and AI‎
  • 2020‎

Engagement is a concept of the utmost importance in human-computer interaction, not only for informing the design and implementation of interfaces, but also for enabling more sophisticated interfaces capable of adapting to users. While the notion of engagement is actively being studied in a diverse set of domains, the term has been used to refer to a number of related, but different concepts. In fact it has been referred to across different disciplines under different names and with different connotations in mind. Therefore, it can be quite difficult to understand what the meaning of engagement is and how one study relates to another one accordingly. Engagement has been studied not only in human-human, but also in human-agent interactions i.e., interactions with physical robots and embodied virtual agents. In this overview article we focus on different factors involved in engagement studies, distinguishing especially between those studies that address task and social engagement, involve children and adults, are conducted in a lab or aimed for long term interaction. We also present models for detecting engagement and for generating multimodal behaviors to show engagement.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: