Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

Pharmacological changes in cellular Ca2+ homeostasis parallel initiation of atrial arrhythmogenesis in murine Langendorff-perfused hearts.

  • Yanmin Zhang‎ et al.
  • Clinical and experimental pharmacology & physiology‎
  • 2009‎

1. Intracellular Ca(2+) overload has been associated with established atrial arrhythmogenesis. The present experiments went on to correlate acute initiation of atrial arrhythmogenesis in Langendorff-perfused mouse hearts with changes in Ca(2+) homeostasis in isolated atrial myocytes following pharmacological procedures that modified the storage or release of sarcoplasmic reticular (SR) Ca(2+) or inhibited entry of extracellular Ca(2+). 2. Caffeine (1 mmol/L) elicited diastolic Ca(2+) waves in regularly stimulated atrial myocytes immediately following addition. This was followed by a decline in the amplitude of the evoked transients and the disappearance of such diastolic events, suggesting partial SR Ca(2+) depletion. 3. Cyclopiazonic acid (CPA; 0.15 micromol/L) produced more gradual reductions in evoked Ca(2+) transients and abolished diastolic Ca(2+) events produced by the further addition of caffeine. 4. Nifedipine (0.5 micromol/L) produced immediate reductions in evoked Ca(2+) transients. Further addition of caffeine produced an immediate increase followed by a decline in the amplitude of the evoked Ca(2+) transients, without eliciting diastolic Ca(2+) events. 5. These findings correlated with changes in spontaneous and provoked atrial arrhythmogenecity in mouse isolated Langendorf-perfused hearts. Thus, caffeine was pro-arrhythmogenic immediately following but not > 5 min after application and both CPA and nifedipine pretreatment inhibited such arrhythmogenesis. 6. Together, these findings relate acute atrial arrhythmogenesis in intact hearts to diastolic Ca(2+) events in atrial myocytes that, in turn, depend upon a finite SR Ca(2+) store and diastolic Ca(2+) release following Ca(2+)-induced Ca(2+) release initiated by the entry of extracellular Ca(2+).


Atrial arrhythmogenicity in aged Scn5a+/DeltaKPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction.

  • Laila Guzadhur‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2010‎

Recent studies have reported that human mutations in Nav1.5 predispose to early age onset atrial arrhythmia. The present experiments accordingly assess atrial arrhythmogenicity in aging Scn5a+/KPQ mice modeling long QT3 syndrome in relationship to cardiac Na(+) channel, Nav1.5, expression. Atrial electrophysiological properties in isolated Langendorff-perfused hearts from 3- and 12-month-old wild type (WT), and Scn5a+/KPQ mice were assessed using programmed electrical stimulation and their Nav1.5 expression assessed by Western blot. Cardiac conduction properties were assessed electrocardiographically in intact anesthetized animals. Monophasic action potential recordings demonstrated increased atrial arrhythmogenicity specifically in aged Scn5a+/DeltaKPQ hearts. These showed greater action potential duration/refractory period ratios but lower atrial Nav1.5 expression levels than aged WT mice. Atrial Nav1.5 levels were higher in young Scn5a+/DeltaKPQ than young WT. These levels increased with age in WT but not Scn5a+/DeltaKPQ. Both young and aged Scn5a+/DeltaKPQ mice showed lower heart rates and longer PR intervals than their WT counterparts. Young Scn5a+/DeltaKPQ mice showed longer QT and QTc intervals than young WT. Aged Scn5a+/DeltaKPQ showed longer QRS durations than aged WT. PR intervals were prolonged and QT intervals were shortened in young relative to aged WT. In contrast, ECG parameters were similar between young and aged Scn5a+/DeltaKPQ. Aged murine Scn5a+/DeltaKPQ hearts thus exhibit an increased atrial arrhythmogenicity. The differing Nav1.5 expression and electrocardiographic indicators of slowed cardiac conduction between Scn5a+/DeltaKPQ and WT, which show further variations associated with aging, may contribute toward atrial arrhythmia in aged Scn5a+/DeltaKPQ hearts.


Reduced Na(+) and higher K(+) channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/- mice.

  • Claire A Martin‎ et al.
  • Open biology‎
  • 2012‎

Brugada syndrome (BrS) is associated with ventricular tachycardia originating particularly in the right ventricle (RV). We explore electrophysiological features predisposing to such arrhythmic tendency and their possible RV localization in a heterozygotic Scn5a+/- murine model. Na(v)1.5 mRNA and protein expression were lower in Scn5a+/- than wild-type (WT), with a further reduction in the RV compared with the left ventricle (LV). RVs showed higher expression levels of K(v)4.2, K(v)4.3 and KChIP2 in both Scn5a+/- and WT. Action potential upstroke velocity and maximum Na(+) current (I(Na)) density were correspondingly decreased in Scn5a+/-, with a further reduction in the RV. The voltage dependence of inactivation was shifted to more negative values in Scn5a+/-. These findings are predictive of a localized depolarization abnormality leading to slowed conduction. Persistent Na(+) current (I(pNa)) density was decreased in a similar pattern to I(Na). RV transient outward current (I(to)) density was greater than LV in both WT and Scn5a+/-, and had larger time constants of inactivation. These findings were also consistent with the observation that AP durations were smallest in the RV of Scn5a+/-, fulfilling predictions of an increased heterogeneity of repolarization as an additional possible electrophysiological mechanism for arrhythmogenesis in BrS.


Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts.

  • Ian N Sabir‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2008‎

Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K(+)) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K(+)) hearts (P<0.01): this was prevented by treatment with lidocaine (10 microM, P<0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P<0.05) maximal gradients (from 0.55+/-0.14 to 2.35+/-0.67 in the epicardium and from 0.67+/-0.13 to 1.87 +/-0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from -2.14+/-0.52 ms to 50.93+/-14.45 ms in the epicardium and from 8.14+/-1.49 ms to 44.64+/-5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P>0.05) on either maximal gradients (0.78+/-0.27 in the epicardium and 0.83+/-0.45 in the endocardium) or critical DIs (6.06+/-2.10 ms and 7.04+/-3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P<0.05) both these parameters (1.05+/-0.30 in the epicardium and 0.89+/-0.36 in the endocardium and 30.38+/-8.88 ms in the epicardium and 31.65+/-4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings.


Multiple targets for flecainide action: implications for cardiac arrhythmogenesis.

  • Samantha C Salvage‎ et al.
  • British journal of pharmacology‎
  • 2018‎

Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function.


Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts.

  • Shiraz Ahmad‎ et al.
  • Mechanisms of ageing and development‎
  • 2018‎

Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.


Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features.

  • Mengye Li‎ et al.
  • PloS one‎
  • 2018‎

Exercising horses uniquely accommodate 7-8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes.


Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse.

  • Samantha C Salvage‎ et al.
  • Journal of cell science‎
  • 2019‎

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 μM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data.

  • Xin Hui S Chan‎ et al.
  • PLoS medicine‎
  • 2020‎

Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria.


Reduced cardiomyocyte Na+ current in the age-dependent murine Pgc-1β-/- model of ventricular arrhythmia.

  • Shiraz Ahmad‎ et al.
  • Journal of cellular physiology‎
  • 2019‎

Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p < 0.0001), without independent effects of, or interactions with age. Voltages at half-maximal current V*, and steepness factors k in plots of voltage dependences of both Na+ current activation and inactivation, and time constants for its postrepolarisation recovery from inactivation, remained indistinguishable through all experimental groups. So were the activation and rectification properties of delayed outward (K+ ) currents, demonstrated from tail currents reflecting current recoveries from respective varying or constant voltage steps. These current-voltage properties directly implicate decreases specifically in maximum available Na+ current with unchanged voltage dependences and unaltered K+ current properties, in proarrhythmic reductions in AP conduction velocity in Pgc-1β-/- ventricles.


Nernst-Planck-Gaussian modelling of electrodiffusional recovery from ephaptic excitation between mammalian cardiomyocytes.

  • Joshua A Morris‎ et al.
  • Frontiers in physiology‎
  • 2023‎

Introduction: In addition to gap junction conduction, recent reports implicate possible ephaptic coupling contributions to action potential (AP) propagation between successive adjacent cardiomyocytes. Here, AP generation in an active cell, withdraws Na+ from, creating a negative potential within, ephaptic spaces between the participating membranes, activating the initially quiescent neighbouring cardiomyocyte. However, sustainable ephaptic transmission requires subsequent complete recovery of the ephaptic charge difference. We explore physical contributions of passive electrodiffusive ion exchange with the remaining extracellular space to this recovery for the first time. Materials and Methods: Computational, finite element, analysis examined limiting, temporal and spatial, ephaptic [Na+], [Cl-], and the consequent Gaussian charge differences and membrane potential recovery patterns following a ΔV∼130 mV AP upstroke at physiological (37°C) temperatures. This incorporated Nernst-Planck formalisms into equations for the time-dependent spatial concentration gradient profiles. Results: Mammalian atrial, ventricular and purkinje cardiomyocyte ephaptic junctions were modelled by closely apposed circularly symmetric membranes, specific capacitance 1 μF cm-2, experimentally reported radii a = 8,000, 12,000 and 40,000 nm respectively and ephaptic axial distance w = 20 nm. This enclosed an ephaptic space containing principal ions initially at normal extracellular [Na+] = 153.1 mM and [Cl-] = 145.8 mM, respective diffusion coefficients D Na = 1.3 × 109 and D Cl = 2 × 109 nm2s-1. Stable, concordant computational solutions were confirmed exploring ≤1,600 nm mesh sizes and Δt≤0.08 ms stepsize intervals. The corresponding membrane voltage profile changes across the initially quiescent membrane were obtainable from computed, graphically represented a and w-dependent ionic concentration differences adapting Gauss's flux theorem. Further simulations explored biological variations in ephaptic dimensions, membrane anatomy, and diffusion restrictions within the ephaptic space. Atrial, ventricular and Purkinje cardiomyocytes gave 40, 180 and 2000 ms 99.9% recovery times, with 720 or 360 ms high limits from doubling ventricular radius or halving diffusion coefficient. Varying a, and D Na and D Cl markedly affected recovery time-courses with logarithmic and double-logarithmic relationships, Varying w exerted minimal effects. Conclusion: We thereby characterise the properties of, and through comparing atrial, ventricular and purkinje recovery times with interspecies in vivo background cardiac cycle duration data, (blue whale ∼2000, human∼90, Etruscan shrew, ∼40 ms) can determine physical limits to, electrodiffusive contributions to ephaptic recovery.


Measurement and interpretation of electrocardiographic QT intervals in murine hearts.

  • Yanmin Zhang‎ et al.
  • American journal of physiology. Heart and circulatory physiology‎
  • 2014‎

Alterations in ECG QT intervals correlate with the risk of potentially fatal arrhythmias, for which transgenic murine hearts are becoming increasingly useful experimental models. However, QT intervals are poorly defined in murine ECGs. As a consequence, several different techniques have been used to measure murine QT intervals. The present work develops a consistent measure of the murine QT interval that correlates with changes in the duration of ventricular myocyte action potentials (APs). Volume-conducted ECGs were compared with simultaneously recorded APs, obtained using floating intracellular microelectrodes in Langendorff-perfused mouse hearts. QT intervals were measured from the onset of the QRS complex. The interval, Q-APR90, measured to the time at 90% AP recovery, was compared with two measures of the QT interval. QT1 was measured to the recovery of the ECG trace to the isoelectric baseline for entirely positive T-waves or to the trough of any negative T-wave undershoot. QT2-used extensively in previous studies-was measured to the return of any ECG trough to the isoelectric baseline. QT1, but not QT2, closely correlated with changes in Q-APR90. These findings were confirmed over a range of pacing rates, in low K(+) concentration solutions, and in Scn5a+/ΔKPQ hearts used to model human long QT syndrome. Application of this method in whole anesthetized mice similarly demonstrated a prolonged corrected QT (QTc) in Scn5a+/ΔKPQ hearts. We therefore describe a robust method for the determination of QT and QTc intervals that correlate with the duration of ventricular myocyte APs in murine hearts.


Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome.

  • Sandeep S Hothi‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2009‎

KCNE1 encodes the beta-subunit of the slow component of the delayed rectifier K(+) current. The Jervell and Lange-Nielsen syndrome is characterized by sensorineural deafness, prolonged QT intervals, and ventricular arrhythmogenicity. Loss-of-function mutations in KCNE1 are implicated in the JLN2 subtype. We recorded left ventricular epicardial and endocardial monophasic action potentials (MAPs) in intact, Langendorff-perfused mouse hearts. KCNE1 (-/-) but not wild-type (WT) hearts showed not only triggered activity and spontaneous ventricular tachycardia (VT), but also VT provoked by programmed electrical stimulation. The presence or absence of VT was related to the following set of criteria for re-entrant excitation for the first time in KCNE1 (-/-) hearts: Quantification of APD(90), the MAP duration at 90% repolarization, demonstrated alterations in (1) the difference, APD(90), between endocardial and epicardial APD(90) and (2) critical intervals for local re-excitation, given by differences between APD(90) and ventricular effective refractory period, reflecting spatial re-entrant substrate. Temporal re-entrant substrate was reflected in (3) increased APD(90) alternans, through a range of pacing rates, and (4) steeper epicardial and endocardial APD(90) restitution curves determined with a dynamic pacing protocol. (5) Nicorandil (20 microM) rescued spontaneous and provoked arrhythmogenic phenomena in KCNE1 (-/-) hearts. WTs remained nonarrhythmogenic. Nicorandil correspondingly restored parameters representing re-entrant criteria in KCNE1 (-/-) hearts toward values found in untreated WTs. It shifted such values in WT hearts in similar directions. Together, these findings directly implicate triggered electrical activity and spatial and temporal re-entrant mechanisms in the arrhythmogenesis observed in KCNE1 (-/-) hearts.


An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle.

  • Thomas H Pedersen‎ et al.
  • The Journal of general physiology‎
  • 2011‎

Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca(2+) release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (G(M)) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces G(M), whereas prolonged activity can markedly elevate G(M). Although these observations implicate G(M) regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of G(M) on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including G(M) changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because G(M) modulation affects only the low-frequency membrane impedance, the G(M) changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of G(M) regulation was increased by high Cl(-) permeability, as in muscle endplate regions, and by increased extracellular [K(+)], as observed in working muscle. Thus, reduced G(M) at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated G(M) after sustained activity would inhibit these processes and thereby accentuate muscle fatigue.


Ryanodine receptor modulation by caffeine challenge modifies Na+ current properties in intact murine skeletal muscle fibres.

  • Sahib S Sarbjit-Singh‎ et al.
  • Scientific reports‎
  • 2020‎

We investigated effects of the ryanodine receptor (RyR) modulator caffeine on Na+ current (INa) activation and inactivation in intact loose-patch clamped murine skeletal muscle fibres subject to a double pulse procedure. INa activation was examined using 10-ms depolarising, V1, steps to varying voltages 0-80 mV positive to resting membrane potential. The dependence of the subsequent, INa inactivation on V1 was examined by superimposed, V2, steps to a fixed depolarising voltage. Current-voltage activation and inactivation curves indicated that adding 0.5 and 2 mM caffeine prior to establishing the patch seal respectively produced decreased (within 1 min) and increased (after ~2 min) peak INa followed by its recovery to pretreatment levels (after ~40 and ~30 min respectively). These changes accompanied negative shifts in the voltage dependence of INa inactivation (within 10 min) and subsequent superimposed positive activation and inactivation shifts, following 0.5 mM caffeine challenge. In contrast, 2 mM caffeine elicited delayed negative shifts in both activation and inactivation. These effects were abrogated if caffeine was added after establishing the patch seal or with RyR block by 10 μM dantrolene. These effects precisely paralleled previous reports of persistently (~10 min) increased cytosolic [Ca2+] with 0.5 mM, and an early peak rapidly succeeded by persistently reduced [Ca2+] likely reflecting gradual RyR inactivation with ≥1.0 mM caffeine. The latter findings suggested inhibitory effects of even resting cytosolic [Ca2+] on INa. They suggest potentially physiologically significant negative feedback regulation of RyR activity on Nav1.4 properties through increased or decreased local cytosolic [Ca2+], Ca2+-calmodulin and FKBP12.


Molecular basis of arrhythmic substrate in ageing murine peroxisome proliferator-activated receptor γ co-activator deficient hearts modelling mitochondrial dysfunction.

  • Charlotte E Edling‎ et al.
  • Bioscience reports‎
  • 2019‎

Ageing and chronic metabolic disorders are associated with mitochondrial dysfunction and cardiac pro-arrhythmic phenotypes which were recently attributed to slowed atrial and ventricular action potential (AP) conduction in peroxisome proliferator-activated receptor γ co-activator deficient (Pgc-1β-/-) mice.


In silico analysis of mutations near S1/S2 cleavage site in SARS-CoV-2 spike protein reveals increased propensity of glycosylation in Omicron strain.

  • Christopher A Beaudoin‎ et al.
  • Journal of medical virology‎
  • 2022‎

Cleavage of the severe respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and posttranslational modifications on SARS-CoV-2 spike protein cleavage sites.


How does flecainide impact RyR2 channel function?

  • Samantha C Salvage‎ et al.
  • The Journal of general physiology‎
  • 2022‎

Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.


Scn3b knockout mice exhibit abnormal ventricular electrophysiological properties.

  • Parvez Hakim‎ et al.
  • Progress in biophysics and molecular biology‎
  • 2008‎

We report for the first time abnormalities in cardiac ventricular electrophysiology in a genetically modified murine model lacking the Scn3b gene (Scn3b(-/-)). Scn3b(-/-) mice were created by homologous recombination in embryonic stem (ES) cells. RT-PCR analysis confirmed that Scn3b mRNA was expressed in the ventricles of wild-type (WT) hearts but was absent in the Scn3b(-/-) hearts. These hearts also showed increased expression levels of Scn1b mRNA in both ventricles and Scn5a mRNA in the right ventricles compared to findings in WT hearts. Scn1b and Scn5a mRNA was expressed at higher levels in the left than in the right ventricles of both Scn3b(-/-) and WT hearts. Bipolar electrogram and monophasic action potential recordings from the ventricles of Langendorff-perfused Scn3b(-/-) hearts demonstrated significantly shorter ventricular effective refractory periods (VERPs), larger ratios of electrogram duration obtained at the shortest and longest S(1)-S(2) intervals, and ventricular tachycardias (VTs) induced by programmed electrical stimulation. Such arrhythmogenesis took the form of either monomorphic or polymorphic VT. Despite shorter action potential durations (APDs) in both the endocardium and epicardium, Scn3b(-/-) hearts showed DeltaAPD(90) values that remained similar to those shown in WT hearts. The whole-cell patch-clamp technique applied to ventricular myocytes isolated from Scn3b(-/-) hearts demonstrated reduced peak Na(+) current densities and inactivation curves that were shifted in the negative direction, relative to those shown in WT myocytes. Together, these findings associate the lack of the Scn3b gene with arrhythmic tendencies in intact perfused hearts and electrophysiological features similar to those in Scn5a(+/-) hearts.


Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions.

  • Emily A Ferenczi‎ et al.
  • The Journal of physiology‎
  • 2004‎

This study investigated membrane transport mechanisms influencing relative changes in cell volume (V) and resting membrane potential (E(m)) following osmotic challenge in amphibian skeletal muscle fibres. It demonstrated a stabilization of E(m) despite cell shrinkage, which was attributable to elevation of intracellular [Cl(-)] above electrochemical equilibrium through Na(+)-Cl(-) and Na(+)-K(+)-2Cl(-) cotransporter action following exposures to extracellular hypertonicity. Fibre volumes (V) determined by confocal microscope x z - scanning of cutaneous pectoris muscle fibres varied linearly with [1/extracellular osmolarity], showing insignificant volume corrections, in fibres studied in Cl(-)-free, normal and Na(+)-free Ringer solutions and in the presence of bumetanide, chlorothiazide and ouabain. The observed volume changes following increases in extracellular tonicity were compared with microelectrode measurements of steady-state resting potentials (E(m)). Fibres in isotonic Cl(-)-free, normal and Na(+)-free Ringer solutions showed similar E(m) values consistent with previously reported permeability ratios P(Na)/P(K)(0.03-0.05) and P(Cl)/P(K) ( approximately 2.0) and intracellular [Na(+)], [K(+)] and [Cl(-)]. Increased extracellular osmolarities produced hyperpolarizing shifts in E(m) in fibres studied in Cl(-)-free Ringer solution consistent with the Goldman-Hodgkin-Katz (GHK) equation. In contrast, fibres exposed to hypertonic Ringer solutions of normal ionic composition showed no such E(m) shifts, suggesting a Cl(-)-dependent stabilization of membrane potential. This stabilization of E(m) was abolished by withdrawing extracellular Na(+) or by the combined presence of the Na(+)-Cl(-) cotransporter (NCC) inhibitor chlorothiazide (10 microM) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) inhibitor bumetanide (10 microM), or the Na(+)-K(+)-ATPase inhibitor ouabain (1 or 10 microM) during alterations in extracellular osmolarity. Application of such agents after such increases in tonicity only produced a hyperpolarization after a time delay, as expected for passive Cl(-) equilibration. These findings suggest a model that implicates the NCC and/or NKCC in fluxes that maintain [Cl(-)](i) above its electrochemical equilibrium. Such splinting of [Cl(-)](i) in combination with the high P(Cl)/P(K) of skeletal muscle stabilizes E(m) despite volume changes produced by extracellular hypertonicity, but at the expense of a cellular capacity for regulatory volume increases (RVIs). In situations where P(Cl)/P(K) is low, the same co-transporters would instead permit RVIs but at the expense of a capacity to stabilize E(m).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: