2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia.

  • Christina Austin-Tse‎ et al.
  • American journal of human genetics‎
  • 2013‎

Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65.


Nephronophthisis-associated CEP164 regulates cell cycle progression, apoptosis and epithelial-to-mesenchymal transition.

  • Gisela G Slaats‎ et al.
  • PLoS genetics‎
  • 2014‎

We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys.


Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization.

  • Albane A Bizet‎ et al.
  • Nature communications‎
  • 2015‎

Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.


Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma.

  • Haley R Noonan‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

Patients with von Hippel-Lindau (VHL) disease harbor a germline mutation in the VHL gene leading to the development of several tumor types including clear cell renal cell carcinoma (ccRCC). In addition, the VHL gene is inactivated in over 90% of sporadic ccRCC cases. 'Clear cell' tumors contain large, proliferating cells with 'clear cytoplasm', and a reduced number of cilia. VHL inactivation leads to the stabilization of hypoxia inducible factors 1a and 2a [HIF1a and HIF2a (HIF2a is also known as EPAS1)] with consequent up-regulation of specific target genes involved in cell proliferation, angiogenesis and erythropoiesis. A zebrafish model with a homozygous inactivation in the VHL gene (vhl(-/-)) recapitulates several aspects of the human disease, including development of highly vascular lesions in the brain and the retina and erythrocytosis. Here, we characterize for the first time the epithelial abnormalities present in the kidney of the vhl(-/-) zebrafish larvae as a first step in building a model of ccRCC in zebrafish. Our data show that the vhl(-/-) zebrafish kidney is characterized by an increased tubule diameter, disorganized cilia, the dramatic formation of cytoplasmic lipid vesicles, glycogen accumulation, aberrant cell proliferation and abnormal apoptosis. This phenotype of the vhl(-/-) pronephros is reminiscent of clear cell histology, indicating that the vhl(-/-) mutant zebrafish might serve as a model of early stage RCC. Treatment of vhl(-/-) zebrafish embryos with a small-molecule HIF2a inhibitor rescued the pronephric abnormalities, underscoring the value of the zebrafish model in drug discovery for treatment of VHL disease and ccRCC.


Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure.

  • Xueping Fan‎ et al.
  • Cell reports‎
  • 2012‎

Robo2 is the cell surface receptor for the repulsive guidance cue Slit and is involved in axon guidance and neuronal migration. Nephrin is a podocyte slit-diaphragm protein that functions in the kidney glomerular filtration barrier. Here, we report that Robo2 is expressed at the basal surface of mouse podocytes and colocalizes with nephrin. Biochemical studies indicate that Robo2 forms a complex with nephrin in the kidney through adaptor protein Nck. In contrast to the role of nephrin that promotes actin polymerization, Slit2-Robo2 signaling inhibits nephrin-induced actin polymerization. In addition, the amount of F-actin associated with nephrin is increased in Robo2 knockout mice that develop an altered podocyte foot process structure. Genetic interaction study further reveals that loss of Robo2 alleviates the abnormal podocyte structural phenotype in nephrin null mice. These results suggest that Robo2 signaling acts as a negative regulator on nephrin to influence podocyte foot process architecture.


Polycystin-2 immunolocalization and function in zebrafish.

  • Tomoko Obara‎ et al.
  • Journal of the American Society of Nephrology : JASN‎
  • 2006‎

Polycystin-2 functions as a cation-permeable transient receptor potential ion channel in kidney epithelial cells and when mutated results in human autosomal dominant polycystic kidney disease. For further exploration of the in vivo functions of Polycystin-2, this study examined its expression and function during zebrafish embryogenesis. pkd2 mRNA is ubiquitously expressed, and its presence in the larval kidney could be confirmed by reverse transcription-PCR on isolated pronephroi. Immunostaining with anti-zebrafish Polycystin-2 antibody revealed protein expression in motile kidney epithelial cell cilia and intracellular cell membranes. Intracellular localization was segment specific; in the proximal nephron segment, Polycystin-2 was localized to basolateral cell membranes, whereas in the caudal pronephric segment, Polycystin-2 was concentrated in subapical cytoplasmic vesicles. Polycystin-2 also was expressed in muscle cells and in a variety of sensory cells that are associated with mechanotransduction, including cells of the ear, the lateral line organ, and the olfactory placodes. Disruption of Polycystin-2 mRNA expression resulted in pronephric kidney cysts, body axis curvature, organ laterality defects, and hydrocephalus-defects that could be rescued by expression of a human PKD2 mRNA. In-frame deletions in the first extracellular loop and C-terminal phosphofurin acidic cluster sorting protein-1 (PACS-1) binding sites in the cytoplasmic tail caused Polycystin-2 mislocalization to the apical cell surface. Unlike zebrafish intraflagellar transport protein (IFT) mutants, cyst formation was not associated with cilia defects and instead correlated with reduced kidney fluid output, expansion of caudal duct apical cell membranes, and occlusion of the caudal pronephric nephron segment.


Wnt signaling mediates new nephron formation during zebrafish kidney regeneration.

  • Caramai N Kamei‎ et al.
  • Development (Cambridge, England)‎
  • 2019‎

Zebrafish kidneys use resident kidney stem cells to replace damaged tubules with new nephrons: the filtration units of the kidney. What stimulates kidney progenitor cells to form new nephrons is not known. Here, we show that wnt9a and wnt9b are induced in the injured kidney at sites where frizzled9b- and lef1-expressing progenitor cells form new nephrons. New nephron aggregates are patterned by Wnt signaling, with high canonical Wnt-signaling cells forming a single cell thick rosette that demarcates: domains of cell proliferation in the elongating nephron; and tubule fusion where the new nephron plumbs into the distal tubule and establishes blood filtrate drainage. Pharmacological blockade of canonical Wnt signaling inhibited new nephron formation after injury by inhibiting cell proliferation, and resulted in loss of polarized rosette structures in the aggregates. Mutation in frizzled9b reduced total kidney nephron number, caused defects in tubule morphology and reduced regeneration of new nephrons after injury. Our results demonstrate an essential role for Wnt/frizzled signaling in adult zebrafish kidney development and regeneration, highlighting conserved mechanisms underlying both mammalian kidney development and kidney stem cell-directed neonephrogenesis in zebrafish.


EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells.

  • Stephanie Grainger‎ et al.
  • Nature cell biology‎
  • 2019‎

Wnt signalling drives many processes in development, homeostasis and disease; however, the role and mechanism of individual ligand-receptor (Wnt-Frizzled (Fzd)) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that the epidermal growth factor receptor (EGFR) is required as a cofactor for Wnt9a-Fzd9b signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail in response to Wnt9a promotes internalization of the Wnt9a-Fzd9b-LRP signalosome and subsequent signal transduction. These findings provide mechanistic insights for specific Wnt-Fzd signals, which will be crucial for specific therapeutic targeting and regenerative medicine.


Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

  • Qin Tang‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA-protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous-mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish.


Novel Transgenic Lines to Analyze Renal Glutathione Redox Potential In Vivo.

  • Yuya Sugano‎ et al.
  • Zebrafish‎
  • 2020‎

Reactive oxygen species (ROS) are important regulators of intracellular signaling pathways in health and disease. It is implicated that ROS may play critical roles in pathogenesis of a number of kidney diseases including diabetic nephropathy. However, due to the lack of tools for in vivo detection of redox status, our knowledge of redox dynamics is still fragmentary. In this study, we present novel zebrafish UAS transgenic lines expressing mitochondrial and cytoplasmic targeted redox fluorescent biosensors, Grx1-roGFP2 and mitoGrx1-roGFP2. As the zebrafish is an ideal animal model for intravital imaging, these transgenic zebrafish provide useful tools to analyze renal redox dynamics in vivo.


Harmonizing variant classification for return of results in the All of Us Research Program.

  • Steven M Harrison‎ et al.
  • Human mutation‎
  • 2022‎

The All of Us Research Program (AoURP) is a historic effort to accelerate research and improve healthcare by generating and collating data from one million people in the United States. Participants will have the option to receive results from their genome analysis, including actionable findings in 59 gene-disorder pairs for which disorder-associated variants are recommended for return by the American College of Medical Genetics and Genomics. To ensure consistent reporting across the AoURP, in a prelaunch study the four participating clinical laboratories shared all variant classifications in the 59 genes of interest from their internal databases. Of the 11,813 unique variants classified by at least two of the four laboratories, classifications were concordant with regard to reportability for 99.1% (11,711), with only 0.9% (102) having reportability differences. Through variant reassessment, data sharing, and discussion of rationale, participating laboratories resolved all 102 reportable differences. These approaches will be maintained during routine AoU reporting to ensure continuous classification harmonization and consistent reporting within AoURP.


Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary.

  • Yulong Liu‎ et al.
  • eLife‎
  • 2022‎

Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.


Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport.

  • Daqing Jin‎ et al.
  • Nature cell biology‎
  • 2014‎

Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4(T804M) mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.


Collective cell migration drives morphogenesis of the kidney nephron.

  • Aleksandr Vasilyev‎ et al.
  • PLoS biology‎
  • 2009‎

Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.


Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants.

  • Jun Wang‎ et al.
  • Disease models & mechanisms‎
  • 2022‎

Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).


Genetic compensation for cilia defects in cep290 mutants by upregulation of cilia-associated small GTPases.

  • Magdalena Cardenas-Rodriguez‎ et al.
  • Journal of cell science‎
  • 2021‎

Mutations in CEP290 (also known as NPHP6), a large multidomain coiled coil protein, are associated with multiple cilia-associated syndromes. Over 130 CEP290 mutations have been linked to a wide spectrum of human ciliopathies, raising the question of how mutations in a single gene cause different disease syndromes. In zebrafish, the expressivity of cep290 deficiencies were linked to the type of genetic ablation: acute cep290 morpholino knockdown caused severe cilia-related phenotypes, whereas deficiencies in a CRISPR/Cas9 genetic mutant were restricted to photoreceptor defects. Here, we show that milder phenotypes in genetic mutants were associated with the upregulation of genes encoding the cilia-associated small GTPases arl3, arl13b and unc119b. Upregulation of UNC119b was also observed in urine-derived renal epithelial cells from human Joubert syndrome CEP290 patients. Ectopic expression of arl3, arl13b and unc119b in cep290 morphant zebrafish embryos rescued Kupffer's vesicle cilia and partially rescued photoreceptor outer segment defects. The results suggest that genetic compensation by upregulation of genes involved in a common subcellular process, lipidated protein trafficking to cilia, may be a conserved mechanism contributing to genotype-phenotype variations observed in CEP290 deficiencies. This article has an associated First Person interview with the first author of the paper.


Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function.

  • Narendra Pathak‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type-specific tubulin glutamylation patterns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or expression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamylase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamylation in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis.


Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

  • Wesley R Lewis‎ et al.
  • PLoS genetics‎
  • 2016‎

Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic.


Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney.

  • Thomas F Gallegos‎ et al.
  • Developmental biology‎
  • 2019‎

The zebrafish kidney regenerates after injury by development of new nephrons from resident adult kidney stem cells. Although adult kidney progenitor cells have been characterized by transplantation and single cell RNA seq, signals that stimulate new nephron formation are not known. Here we demonstrate that fibroblast growth factors and FGF signaling is rapidly induced after kidney injury and that FGF signaling is required for recruitment of progenitor cells to sites of new nephron formation. Chemical or dominant negative blockade of Fgfr1 prevented formation of nephron progenitor cell aggregates after injury and during kidney development. Implantation of FGF soaked beads induced local aggregation of lhx1a:EGFP  ​+ ​kidney progenitor cells. Our results reveal a previously unexplored role for FGF signaling in recruitment of renal progenitors to sites of new nephron formation and suggest a role for FGF signaling in maintaining cell adhesion and cell polarity in newly forming kidney epithelia.


Top2a promotes the development of social behavior via PRC2 and H3K27me3.

  • Yijie Geng‎ et al.
  • Science advances‎
  • 2022‎

Little is understood about the embryonic development of sociality. We screened 1120 known drugs and found that embryonic inhibition of topoisomerase IIα (Top2a) resulted in lasting social deficits in zebrafish. In mice, prenatal Top2 inhibition caused defects in social interaction and communication, which are behaviors that relate to core symptoms of autism. Mutation of Top2a in zebrafish caused down-regulation of a set of genes highly enriched for genes associated with autism in humans. Both the Top2a-regulated and autism-associated gene sets have binding sites for polycomb repressive complex 2 (PRC2), a regulatory complex responsible for H3K27 trimethylation (H3K27me3). Moreover, both gene sets are highly enriched for H3K27me3. Inhibition of the PRC2 component Ezh2 rescued social deficits caused by Top2 inhibition. Therefore, Top2a is a key component of an evolutionarily conserved pathway that promotes the development of social behavior through PRC2 and H3K27me3.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: