Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 60 papers

Standardized benchmarking in the quest for orthologs.

  • Adrian M Altenhoff‎ et al.
  • Nature methods‎
  • 2016‎

Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods.


Ecologically informed microbial biomarkers and accurate classification of mixed and unmixed samples in an extensive cross-study of human body sites.

  • Janko Tackmann‎ et al.
  • Microbiome‎
  • 2018‎

The identification of body site-specific microbial biomarkers and their use for classification tasks have promising applications in medicine, microbial ecology, and forensics. Previous studies have characterized site-specific microbiota and shown that sample origin can be accurately predicted by microbial content. However, these studies were usually restricted to single datasets with consistent experimental methods and conditions, as well as comparatively small sample numbers. The effects of study-specific biases and statistical power on classification performance and biomarker identification thus remain poorly understood. Furthermore, reliable detection in mixtures of different body sites or with noise from environmental contamination has rarely been investigated thus far. Finally, the impact of ecological associations between microbes on biomarker discovery was usually not considered in previous work.


eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses.

  • Jaime Huerta-Cepas‎ et al.
  • Nucleic acids research‎
  • 2019‎

eggNOG is a public database of orthology relationships, gene evolutionary histories and functional annotations. Here, we present version 5.0, featuring a major update of the underlying genome sets, which have been expanded to 4445 representative bacteria and 168 archaea derived from 25 038 genomes, as well as 477 eukaryotic organisms and 2502 viral proteomes that were selected for diversity and filtered by genome quality. In total, 4.4M orthologous groups (OGs) distributed across 379 taxonomic levels were computed together with their associated sequence alignments, phylogenies, HMM models and functional descriptors. Precomputed evolutionary analysis provides fine-grained resolution of duplication/speciation events within each OG. Our benchmarks show that, despite doubling the amount of genomes, the quality of orthology assignments and functional annotations (80% coverage) has persisted without significant changes across this update. Finally, we improved eggNOG online services for fast functional annotation and orthology prediction of custom genomics or metagenomics datasets. All precomputed data are publicly available for downloading or via API queries at http://eggnog.embl.de.


A family of interaction-adjusted indices of community similarity.

  • Thomas Sebastian Benedikt Schmidt‎ et al.
  • The ISME journal‎
  • 2017‎

Interactions between taxa are essential drivers of ecological community structure and dynamics, but they are not taken into account by traditional indices of β diversity. In this study, we propose a novel family of indices that quantify community similarity in the context of taxa interaction networks. Using publicly available datasets, we assessed the performance of two specific indices that are Taxa INteraction-Adjusted (TINA, based on taxa co-occurrence networks), and Phylogenetic INteraction-Adjusted (PINA, based on phylogenetic similarities). TINA and PINA outperformed traditional indices when partitioning human-associated microbial communities according to habitat, even for extremely downsampled datasets, and when organising ocean micro-eukaryotic plankton diversity according to geographical and physicochemical gradients. We argue that interaction-adjusted indices capture novel aspects of diversity outside the scope of traditional approaches, highlighting the biological significance of ecological association networks in the interpretation of community similarity.


The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest.

  • Damian Szklarczyk‎ et al.
  • Nucleic acids research‎
  • 2023‎

Much of the complexity within cells arises from functional and regulatory interactions among proteins. The core of these interactions is increasingly known, but novel interactions continue to be discovered, and the information remains scattered across different database resources, experimental modalities and levels of mechanistic detail. The STRING database (https://string-db.org/) systematically collects and integrates protein-protein interactions-both physical interactions as well as functional associations. The data originate from a number of sources: automated text mining of the scientific literature, computational interaction predictions from co-expression, conserved genomic context, databases of interaction experiments and known complexes/pathways from curated sources. All of these interactions are critically assessed, scored, and subsequently automatically transferred to less well-studied organisms using hierarchical orthology information. The data can be accessed via the website, but also programmatically and via bulk downloads. The most recent developments in STRING (version 12.0) are: (i) it is now possible to create, browse and analyze a full interaction network for any novel genome of interest, by submitting its complement of encoded proteins, (ii) the co-expression channel now uses variational auto-encoders to predict interactions, and it covers two new sources, single-cell RNA-seq and experimental proteomics data and (iii) the confidence in each experimentally derived interaction is now estimated based on the detection method used, and communicated to the user in the web-interface. Furthermore, STRING continues to enhance its facilities for functional enrichment analysis, which are now fully available also for user-submitted genomes.


Cytoscape stringApp 2.0: Analysis and Visualization of Heterogeneous Biological Networks.

  • Nadezhda T Doncheva‎ et al.
  • Journal of proteome research‎
  • 2023‎

Biological networks are often used to represent complex biological systems, which can contain several types of entities. Analysis and visualization of such networks is supported by the Cytoscape software tool and its many apps. While earlier versions of stringApp focused on providing intraspecies protein-protein interactions from the STRING database, the new stringApp 2.0 greatly improves the support for heterogeneous networks. Here, we highlight new functionality that makes it possible to create networks that contain proteins and interactions from STRING as well as other biological entities and associations from other sources. We exemplify this by complementing a published SARS-CoV-2 interactome with interactions from STRING. We have also extended stringApp with new data and query functionality for protein-protein interactions between eukaryotic parasites and their hosts. We show how this can be used to retrieve and visualize a cross-species network for a malaria parasite, its host, and its vector. Finally, the latest stringApp version has an improved user interface, allows retrieval of both functional associations and physical interactions, and supports group-wise enrichment analysis of different parts of a network to aid biological interpretation. stringApp is freely available at https://apps.cytoscape.org/apps/stringapp.


Analysis of the Human Kinome and Phosphatome by Mass Cytometry Reveals Overexpression-Induced Effects on Cancer-Related Signaling.

  • Xiao-Kang Lun‎ et al.
  • Molecular cell‎
  • 2019‎

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.


Strain-Resolved Dynamics of the Lung Microbiome in Patients with Cystic Fibrosis.

  • Marija Dmitrijeva‎ et al.
  • mBio‎
  • 2021‎

In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.IMPORTANCE Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. Here, we propose a minimally invasive and culture-independent method to monitor microbial lung content in patients with cystic fibrosis at minimal additional effort on the patient's part. Through repeated sampling and metagenomics sequencing of our selected cystic fibrosis patients, we successfully classify infecting bacterial lineages and deconvolute multiple lineage variants of the same species within a given patient. This study explores the application of modern computational methods for deconvoluting lineages in the cystic fibrosis lung microbiome, an environment known to be inhabited by a heterogeneous pathogen population that complicates management of the disorder.


PaxDb 5.0: Curated Protein Quantification Data Suggests Adaptive Proteome Changes in Yeasts.

  • Qingyao Huang‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2023‎

The "Protein Abundances Across Organisms" database (PaxDb) is an integrative metaresource dedicated to protein abundance levels, in tissue-specific or whole-organism proteomes. PaxDb focuses on computing best-estimate abundances for proteins in normal/healthy contexts and expresses abundance values for each protein in "parts per million" in relation to all other protein molecules in the cell. The uniform data reprocessing, quality scoring, and integrated orthology relations have made PaxDb one of the preferred tools for comparisons between individual datasets, tissues, or organisms. In describing the latest version 5.0 of PaxDb, we particularly emphasize the data integration from various types of raw data and how we expanded the number of organisms and tissue groups as well as the proteome coverage. The current collection of PaxDb includes 831 original datasets from 170 species, including 22 Archaea, 81 Bacteria, and 67 Eukaryota. Apart from detailing the data update, we also present a comparative analysis of the human proteome subset of PaxDb against the two most widely used human proteome data resources: Human Protein Atlas and Genotype-Tissue Expression. Lastly, through our protein abundance data, we reveal an evolutionary trend in the usage of sulfur-containing amino acids in the proteomes of Fungi.


STITCH 4: integration of protein-chemical interactions with user data.

  • Michael Kuhn‎ et al.
  • Nucleic acids research‎
  • 2014‎

STITCH is a database of protein-chemical interactions that integrates many sources of experimental and manually curated evidence with text-mining information and interaction predictions. Available at http://stitch.embl.de, the resulting interaction network includes 390 000 chemicals and 3.6 million proteins from 1133 organisms. Compared with the previous version, the number of high-confidence protein-chemical interactions in human has increased by 45%, to 367 000. In this version, we added features for users to upload their own data to STITCH in the form of internal identifiers, chemical structures or quantitative data. For example, a user can now upload a spreadsheet with screening hits to easily check which interactions are already known. To increase the coverage of STITCH, we expanded the text mining to include full-text articles and added a prediction method based on chemical structures. We further changed our scheme for transferring interactions between species to rely on orthology rather than protein similarity. This improves the performance within protein families, where scores are now transferred only to orthologous proteins, but not to paralogous proteins. STITCH can be accessed with a web-interface, an API and downloadable files.


eggNOG v4.0: nested orthology inference across 3686 organisms.

  • Sean Powell‎ et al.
  • Nucleic acids research‎
  • 2014‎

With the increasing availability of various 'omics data, high-quality orthology assignment is crucial for evolutionary and functional genomics studies. We here present the fourth version of the eggNOG database (available at http://eggnog.embl.de) that derives nonsupervised orthologous groups (NOGs) from complete genomes, and then applies a comprehensive characterization and analysis pipeline to the resulting gene families. Compared with the previous version, we have more than tripled the underlying species set to cover 3686 organisms, keeping track with genome project completions while prioritizing the inclusion of high-quality genomes to minimize error propagation from incomplete proteome sets. Major technological advances include (i) a robust and scalable procedure for the identification and inclusion of high-quality genomes, (ii) provision of orthologous groups for 107 different taxonomic levels compared with 41 in eggNOGv3, (iii) identification and annotation of particularly closely related orthologous groups, facilitating analysis of related gene families, (iv) improvements of the clustering and functional annotation approach, (v) adoption of a revised tree building procedure based on the multiple alignments generated during the process and (vi) implementation of quality control procedures throughout the entire pipeline. As in previous versions, eggNOGv4 provides multiple sequence alignments and maximum-likelihood trees, as well as broad functional annotation. Users can access the complete database of orthologous groups via a web interface, as well as through bulk download.


HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences.

  • João F Matias Rodrigues‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2014‎

Nucleotide sequence data are being produced at an ever increasing rate. Clustering such sequences by similarity is often an essential first step in their analysis-intended to reduce redundancy, define gene families or suggest taxonomic units. Exact clustering algorithms, such as hierarchical clustering, scale relatively poorly in terms of run time and memory usage, yet they are desirable because heuristic shortcuts taken during clustering might have unintended consequences in later analysis steps.


eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.

  • Jaime Huerta-Cepas‎ et al.
  • Nucleic acids research‎
  • 2016‎

eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.


Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper.

  • Jaime Huerta-Cepas‎ et al.
  • Molecular biology and evolution‎
  • 2017‎

Orthology assignment is ideally suited for functional inference. However, because predicting orthology is computationally intensive at large scale, and most pipelines are relatively inaccessible (e.g., new assignments only available through database updates), less precise homology-based functional transfer is still the default for (meta-)genome annotation. We, therefore, developed eggNOG-mapper, a tool for functional annotation of large sets of sequences based on fast orthology assignments using precomputed clusters and phylogenies from the eggNOG database. To validate our method, we benchmarked Gene Ontology (GO) predictions against two widely used homology-based approaches: BLAST and InterProScan. Orthology filters applied to BLAST results reduced the rate of false positive assignments by 11%, and increased the ratio of experimentally validated terms recovered over all terms assigned per protein by 15%. Compared with InterProScan, eggNOG-mapper achieved similar proteome coverage and precision while predicting, on average, 41 more terms per protein and increasing the rate of experimentally validated terms recovered over total term assignments per protein by 35%. EggNOG-mapper predictions scored within the top-5 methods in the three GO categories using the CAFA2 NK-partial benchmark. Finally, we evaluated eggNOG-mapper for functional annotation of metagenomics data, yielding better performance than interProScan. eggNOG-mapper runs ∼15× faster than BLAST and at least 2.5× faster than InterProScan. The tool is available standalone and as an online service at http://eggnog-mapper.embl.de.


STRING v9.1: protein-protein interaction networks, with increased coverage and integration.

  • Andrea Franceschini‎ et al.
  • Nucleic acids research‎
  • 2013‎

Complete knowledge of all direct and indirect interactions between proteins in a given cell would represent an important milestone towards a comprehensive description of cellular mechanisms and functions. Although this goal is still elusive, considerable progress has been made-particularly for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring interactions from one model organism to the other; and (iii) we provide users with statistical information on any functional enrichment observed in their networks.


STITCH 3: zooming in on protein-chemical interactions.

  • Michael Kuhn‎ et al.
  • Nucleic acids research‎
  • 2012‎

To facilitate the study of interactions between proteins and chemicals, we have created STITCH, an aggregated database of interactions connecting over 300,000 chemicals and 2.6 million proteins from 1133 organisms. Compared to the previous version, the number of chemicals with interactions and the number of high-confidence interactions both increase 4-fold. The database can be accessed interactively through a web interface, displaying interactions in an integrated network view. It is also available for computational studies through downloadable files and an API. As an extension in the current version, we offer the option to switch between two levels of detail, namely whether stereoisomers of a given compound are shown as a merged entity or as separate entities. Separate display of stereoisomers is necessary, for example, for carbohydrates and chiral drugs. Combining the isomers increases the coverage, as interaction databases and publications found through text mining will often refer to compounds without specifying the stereoisomer. The database is accessible at http://stitch.embl.de/.


eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges.

  • Sean Powell‎ et al.
  • Nucleic acids research‎
  • 2012‎

Orthologous relationships form the basis of most comparative genomic and metagenomic studies and are essential for proper phylogenetic and functional analyses. The third version of the eggNOG database (http://eggnog.embl.de) contains non-supervised orthologous groups constructed from 1133 organisms, doubling the number of genes with orthology assignment compared to eggNOG v2. The new release is the result of a number of improvements and expansions: (i) the underlying homology searches are now based on the SIMAP database; (ii) the orthologous groups have been extended to 41 levels of selected taxonomic ranges enabling much more fine-grained orthology assignments; and (iii) the newly designed web page is considerably faster with more functionality. In total, eggNOG v3 contains 721,801 orthologous groups, encompassing a total of 4,396,591 genes. Additionally, we updated 4873 and 4850 original COGs and KOGs, respectively, to include all 1133 organisms. At the universal level, covering all three domains of life, 101,208 orthologous groups are available, while the others are applicable at 40 more limited taxonomic ranges. Each group is amended by multiple sequence alignments and maximum-likelihood trees and broad functional descriptions are provided for 450,904 orthologous groups (62.5%).


STITCH 2: an interaction network database for small molecules and proteins.

  • Michael Kuhn‎ et al.
  • Nucleic acids research‎
  • 2010‎

Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug-target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other chemical databases, we adopt InChIKeys that allow identification of chemicals with a short, checksum-like string. STITCH 2.0 connects proteins from 630 organisms to over 74,000 different chemicals, including 2200 drugs. STITCH can be accessed at http://stitch.embl.de/.


Assessing systems properties of yeast mitochondria through an interaction map of the organelle.

  • Fabiana Perocchi‎ et al.
  • PLoS genetics‎
  • 2006‎

Mitochondria carry out specialized functions; compartmentalized, yet integrated into the metabolic and signaling processes of the cell. Although many mitochondrial proteins have been identified, understanding their functional interrelationships has been a challenge. Here we construct a comprehensive network of the mitochondrial system. We integrated genome-wide datasets to generate an accurate and inclusive mitochondrial parts list. Together with benchmarked measures of protein interactions, a network of mitochondria was constructed in their cellular context, including extra-mitochondrial proteins. This network also integrates data from different organisms to expand the known mitochondrial biology beyond the information in the existing databases. Our network brings together annotated and predicted functions into a single framework. This enabled, for the entire system, a survey of mutant phenotypes, gene regulation, evolution, and disease susceptibility. Furthermore, we experimentally validated the localization of several candidate proteins and derived novel functional contexts for hundreds of uncharacterized proteins. Our network thus advances the understanding of the mitochondrial system in yeast and identifies properties of genes underlying human mitochondrial disorders.


STRING 7--recent developments in the integration and prediction of protein interactions.

  • Christian von Mering‎ et al.
  • Nucleic acids research‎
  • 2007‎

Information on protein-protein interactions is still mostly limited to a small number of model organisms, and originates from a wide variety of experimental and computational techniques. The database and online resource STRING generalizes access to protein interaction data, by integrating known and predicted interactions from a variety of sources. The underlying infrastructure includes a consistent body of completely sequenced genomes and exhaustive orthology classifications, based on which interaction evidence is transferred between organisms. Although primarily developed for protein interaction analysis, the resource has also been successfully applied to comparative genomics, phylogenetics and network studies, which are all facilitated by programmatic access to the database backend and the availability of compact download files. As of release 7, STRING has almost doubled to 373 distinct organisms, and contains more than 1.5 million proteins for which associations have been pre-computed. Novel features include AJAX-based web-navigation, inclusion of additional resources such as BioGRID, and detailed protein domain annotation. STRING is available at http://string.embl.de/


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: