Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups.

  • Winfried Neuhaus‎ et al.
  • PloS one‎
  • 2015‎

Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.


More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells.

  • Christine Silwedel‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

Ureaplasma species (spp.) are commonly regarded as low-virulent commensals but may cause invasive diseases in immunocompromised adults and in neonates, including neonatal meningitis. The interactions of Ureaplasma spp. with host defense mechanisms are poorly understood. This study addressed Ureaplasma-driven cell death, concentrating on apoptosis as well as inflammatory cell death.


IFN-γ and TNF-α synergize to inhibit CTGF expression in human lung endothelial cells.

  • Roderich Laug‎ et al.
  • PloS one‎
  • 2012‎

Connective tissue growth factor (CTGF/CCN2) is an angiogenetic and profibrotic factor, acting downstream of TGF-β, involved in both airway- and vascular remodeling. While the T-helper 1 (Th1) cytokine interferon-gamma (IFN-γ) is well characterized as immune-modulatory and anti-fibrotic cytokine, the role of IFN-γ in lung endothelial cells (LEC) is less defined. Tumour necrosis factor alpha (TNF-α) is another mediator that drives vascular remodeling in inflammation by influencing CTGF expression. In the present study we investigated the influence of IFN-γ and TNF-α on CTGF expression in human LEC (HPMEC-ST1.6R) and the effect of CTGF knock down on human LEC. IFN-γ and TNF-α down-regulated CTGF in human LEC at the promoter-, transcriptional- and translational-level in a dose- and time-dependent manner. The inhibitory effect of IFN-γ on CTGF-expression could be almost completely compensated by the Jak inhibitor AG-490, showing the involvement of the Jak-Stat signaling pathway. Besides the inhibitory effect of IFN-γ and TNF-α alone on CTGF expression and LEC proliferation, these cytokines had an additive inhibitory effect on proliferation as well as on CTGF expression when administered together. To study the functional role of CTGF in LEC, endogenous CTGF expression was down-regulated by a lentiviral system. CTGF silencing in LEC by transduction of CTGF shRNA reduced cell proliferation, but did not influence the anti-proliferative effect of IFN-γ and TNF-α. In conclusion, our data demonstrated that CTGF was negatively regulated by IFN-γ in LEC in a Jak/Stat signaling pathway-dependent manner. In addition, an additive effect of IFN-γ and TNF-α on inhibition of CTGF expression and cell proliferation could be found. The inverse correlation between IFN-γ and CTGF expression in LEC could mean that screwing the Th2 response to a Th1 response with an additional IFN-γ production might be beneficial to avoid airway remodeling in asthma.


Differential modulation of pulmonary caspases: Is this the key to Ureaplasma-driven chronic inflammation?

  • Christine Silwedel‎ et al.
  • PloS one‎
  • 2019‎

Although accepted agents in chorioamnionitis and preterm birth, the role of Ureaplasma species (spp.) in inflammation-driven morbidities of prematurity, including the development of bronchopulmonary dysplasia, remains controversial. To add to scarce in vitro data addressing the pro-inflammatory capacity of Ureaplasma spp., pulmonary epithelial-like A549 cells and human pulmonary microvascular endothelial cells (HPMEC) were incubated with Ureaplasma (U.) urealyticum, U. parvum, and Escherichia coli lipopolysaccharide (LPS). Ureaplasma isolates down-regulated caspase mRNA levels in A549 cells (caspase 8: p<0.001, 9: p<0.001, vs. broth), while increasing caspase protein expression, enzyme activity, and cell death in HPMEC (active caspase 3: p<0.05, caspase 8: p<0.05, active caspase 9: p<0.05, viability: p<0.05). LPS, contrarily, induced caspase mRNA expression in HPMEC (caspase 3: p<0.01, 4: p<0.001, 5: p<0.001, 8: p<0.001, vs. control), but not in A549 cells, and did not affect enzyme activity or protein levels in either cell line. LPS, but neither Ureaplasma isolate, enhanced mRNA expression of pro-inflammatory interleukin (IL)-6 in both A549 (p<0.05, vs. control) and HPMEC (p<0.001) as well as tumor necrosis factor-α (p<0.01), IL-1β (p<0.001), and IL-8 (p<0.05) in HPMEC. We are therefore the first to demonstrate a differential modulation of pulmonary caspases by Ureaplasma spp. in vitro. Ureaplasma-driven enhanced protein expression and activity of caspases in pulmonary endothelial cells result in cell death and may cause structural damage. Down-regulated caspase mRNA in pulmonary epithelial cells, contrarily, may indicate Ureaplasma-induced inhibition of apoptosis and prevent effective immune responses. Both may ultimately contribute to chronic Ureaplasma colonization and long-term pulmonary inflammation.


Ureaplasma species modulate cell adhesion molecules and growth factors in human brain microvascular endothelial cells.

  • Christine Silwedel‎ et al.
  • Cytokine‎
  • 2019‎

Ureaplasma species (spp.) are considered commensals of the adult urogenital tract, but may cause chorioamnionitis and preterm birth as well as sepsis and meningitis in neonates. Pathomechanisms in Ureaplasma-driven neuroinflammation are largely unknown. This study addressed mRNA and protein expression of intercellular and vascular cell adhesion molecules (ICAM-1, VCAM-1), granulocyte-colony stimulating factor (G-CSF), and vascular endothelial growth factor (VEGF) in native or lipopolysaccharide (LPS) co-stimulated human brain microvascular endothelial cells (HBMEC) exposed to Ureaplasma (U.) urealyticum or U. parvum. Ureaplasma spp. reduced G-CSF mRNA (p < 0.05) and protein expression (p < 0.01) and increased VEGF mRNA levels (p < 0.01) in native HBMEC. Upon co-stimulation, Ureaplasma isolates enhanced LPS-evoked VEGF and ICAM-1 mRNA expression (p < 0.05), but mitigated G-CSF and VCAM-1 mRNA responses (p < 0.05). In line with previous findings, our results indicate an ability of Ureaplasma spp. to compromise blood-brain barrier integrity, mitigate immune defense, and subdue neuroprotective mechanisms. This may facilitate intracerebral inflammation, allow chronic infections, and promote brain injury. More pronounced effects in co-stimulated cells may indicate an immunomodulatory capacity of Ureaplasma spp.


Infection of human coronary artery endothelial cells by group B streptococcus contributes to dysregulation of apoptosis, hemostasis, and innate immune responses.

  • Claudia Beyrich‎ et al.
  • Mediators of inflammation‎
  • 2011‎

Early onset sepsis due to group B streptococcus leads to neonatal morbidity, increased mortality, and long-term neurological deficencies. Interaction between septicemic GBS and confluent monolayers of human coronary artery endothelial cells (HCAECs) was analyzed by genome wide expression profiling. In total, 124 genes were differentially expressed (89 upregulated, 35 downregulated) based on a more than 3-fold difference to control HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection, and inflammation. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real-time RT-PCR assay (granulocyte chemotactic protein 2), ELISA (urokinase, cyclooxygenase 2, granulocyte chemotactic protein 1), and western blotting (Heme oxygenase1, BCL2 interacting protein) at various time points between 4 and 24 hours. These results indicate that GBS infection might influence signalling pathways leading to impaired function of the innate immune system and hemorrhagic and inflammatory complications during GBS sepsis.


Caffeine and rolipram affect Smad signalling and TGF-β1 stimulated CTGF and transgelin expression in lung epithelial cells.

  • Markus Fehrholz‎ et al.
  • PloS one‎
  • 2014‎

Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-β1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGF-β1-inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGF-β1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-β1 induced up-regulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An understanding of these mechanisms might help to explain the protective effects of caffeine in prevention of BPD and suggests rolipram to be a potent replacement for caffeine.


Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14+ Monocytes.

  • Kirsten Glaser‎ et al.
  • PloS one‎
  • 2016‎

Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes.


The new generation synthetic reconstituted surfactant CHF5633 suppresses LPS-induced cytokine responses in human neonatal monocytes.

  • Kirsten Glaser‎ et al.
  • Cytokine‎
  • 2016‎

New generation synthetic surfactants represent a promising alternative in the treatment of respiratory distress syndrome in preterm infants. CHF5633, a new generation reconstituted agent, has demonstrated biophysical effectiveness in vitro and in vivo. In accordance to several well-known surfactant preparations, we recently demonstrated anti-inflammatory effects on LPS-induced cytokine responses in human adult monocytes. The present study addressed pro- and anti-inflammatory effects of CHF5633 in human cord blood monocytes.


An underestimated pathogen: Staphylococcus epidermidis induces pro-inflammatory responses in human alveolar epithelial cells.

  • Ying Dong‎ et al.
  • Cytokine‎
  • 2019‎

Conventionally regarded as a harmless skin commensal, Staphylococcus epidermidis accounts for the majority of neonatal late-onset sepsis and is shown to be associated with neonatal inflammatory morbidities, especially bronchopulmonary dysplasia. This study addressed the pro-inflammatory capacity of different S. epidermidis strains on human alveolar epithelial cells.


Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells.

  • Steffen Kunzmann‎ et al.
  • PloS one‎
  • 2018‎

The effect of endogenous progesterone and/or exogenous pre- or postnatal progesterone application on lung function of preterm infants is poorly defined. While prenatal progesterone substitution may prevent preterm birth, in vitro and in vivo data suggest a benefit of postnatal progesterone replacement on the incidence and severity of bronchopulmonary dysplasia (BPD). However, the molecular mechanisms responsible for progesterone's effects are undefined. Numerous factors are involved in lung development, airway inflammation, and airway remodeling: the transforming growth factor beta (TGF-β)/mothers against decapentaplegic homolog (Smad) signaling pathway and TGF-β-regulated genes, such as connective tissue growth factor (CTGF), transgelin (TAGLN), and plasminogen activator inhibitor-1 (PAI-1). These processes contribute to the development of BPD. The aim of the present study was to clarify whether progesterone could affect TGF-β1-activated Smad signaling and CTGF/transgelin/PAI-1 expression in lung epithelial cells. The pharmacological effect of progesterone on Smad signaling was investigated using a TGF-β1-inducible luciferase reporter and western blotting analysis of phosphorylated Smad2/3 in A549 lung epithelial cells. The regulation of CTGF, transgelin, and PAI-1 expression by progesterone was studied using a promoter-based luciferase reporter, quantitative real-time PCR, and western blotting in the same cell line. While progesterone alone had no direct effect on Smad signaling in lung epithelial cells, it dose-dependently inhibited TGF-β1-induced Smad3 phosphorylation, as shown by luciferase assays and western blotting analysis. Progesterone also antagonized the TGF-β1/Smad-induced upregulation of CTGF, transgelin, and PAI-1 at the promoter, mRNA, and/or protein levels. The present study highlights possible new molecular mechanisms involving progesterone, including inhibition of TGF-β1-activated Smad signaling and TGF-β1-regulated genes involved in BPD pathogenesis, which are likely to attenuate the development of BPD by inhibiting TGF-β1-mediated airway remodeling. Understanding these mechanisms might help to explain the effects of pre- or postnatal application of progesterone on lung diseases of preterm infants.


Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4+ Lymphocytes.

  • Markus Fehrholz‎ et al.
  • PloS one‎
  • 2016‎

Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown.


Synergistic effect of caffeine and glucocorticoids on expression of surfactant protein B (SP-B) mRNA.

  • Markus Fehrholz‎ et al.
  • PloS one‎
  • 2012‎

Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis.


Novel insights into neuroinflammation: bacterial lipopolysaccharide, tumor necrosis factor α, and Ureaplasma species differentially modulate atypical chemokine receptor 3 responses in human brain microvascular endothelial cells.

  • Christine Silwedel‎ et al.
  • Journal of neuroinflammation‎
  • 2018‎

Atypical chemokine receptor 3 (ACKR3, synonym CXCR7) is increasingly considered relevant in neuroinflammatory conditions, in which its upregulation contributes to compromised endothelial barrier function and may ultimately allow inflammatory brain injury. While an impact of ACKR3 has been recognized in several neurological autoimmune diseases, neuroinflammation may also result from infectious agents, including Ureaplasma species (spp.). Although commonly regarded as commensals of the adult urogenital tract, Ureaplasma spp. may cause invasive infections in immunocompromised adults as well as in neonates and appear to be relevant pathogens in neonatal meningitis. Nonetheless, clinical and in vitro data on Ureaplasma-induced inflammation are scarce.


Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes.

  • Kirsten Glaser‎ et al.
  • PloS one‎
  • 2018‎

Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma-driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (p<0.05 and p<0.01). These results were paralleled by Uu and Up-induced secretion of MCP-1 protein in both cells (neonatal: p<0.01, adult: p<0.05 and p<0.01). Release of MCP-3, MIP-1α, MIP-1β and MMP-9 was enhanced upon exposure to Up (neonatal: p<0.05, p<0.01 and p<0.001, respectively; adult: p<0.05). Co-stimulation of LPS-primed monocytes with Up increased LPS-induced MCP-1 release in neonatal cells (p<0.05) and aggravated LPS-induced MMP-9 mRNA in both cell subsets (neonatal: p<0.05, adult: p<0.01). Our results document considerable expression of pro-inflammatory CC chemokines and MMP-9 in human monocytes in response to Ureaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus.


Ureaplasma-Driven Neonatal Neuroinflammation: Novel Insights from an Ovine Model.

  • Christine Silwedel‎ et al.
  • Cellular and molecular neurobiology‎
  • 2023‎

Ureaplasma species (spp.) are considered commensals of the adult genitourinary tract, but have been associated with chorioamnionitis, preterm birth, and invasive infections in neonates, including meningitis. Data on mechanisms involved in Ureaplasma-driven neuroinflammation are scarce. The present study addressed brain inflammatory responses in preterm lambs exposed to Ureaplasma parvum (UP) in utero. 7 days after intra-amniotic injection of UP (n = 10) or saline (n = 11), lambs were surgically delivered at gestational day 128-129. Expression of inflammatory markers was assessed in different brain regions using qRT-PCR and in cerebrospinal fluid (CSF) by multiplex immunoassay. CSF was analyzed for UP presence using ureB-based real-time PCR, and MRI scans documented cerebral white matter area and cortical folding. Cerebral tissue levels of atypical chemokine receptor (ACKR) 3, caspases 1-like, 2, 7, and C-X-C chemokine receptor (CXCR) 4 mRNA, as well as CSF interleukin-8 protein concentrations were significantly increased in UP-exposed lambs. UP presence in CSF was confirmed in one animal. Cortical folding and white matter area did not differ among groups. The present study confirms a role of caspases and the transmembrane receptors ACKR3 and CXCR4 in Ureaplasma-driven neuroinflammation. Enhanced caspase 1-like, 2, and 7 expression may reflect cell death. Increased ACKR3 and CXCR4 expression has been associated with inflammatory central nervous system (CNS) diseases and impaired blood-brain barrier function. According to these data and previous in vitro findings from our group, we speculate that Ureaplasma-induced caspase and receptor responses affect CNS barrier properties and thus facilitate neuroinflammation.


Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts.

  • Markus Fehrholz‎ et al.
  • Respiratory research‎
  • 2017‎

Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells.


Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation.

  • Kirsten Glaser‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2017‎

Background:Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p < 0.01 and p < 0.05). Intracellular protein expression of TNF-α, IL-1β and IL-8 in Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p < 0.05). Remarkably, ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p < 0.01, vs. LPS). In contrast to LPS, both isolates induced TLR2 mRNA in neonatal and adult cells (p < 0.001 and p < 0.05) and suppressed TLR4 mRNA in adult monocytes (p < 0.05). Upon co-stimulation, Uu8 and Up3 inhibited LPS-induced intracellular IL-1β (p < 0.001 and p < 0.05) and IL-8 in adult monocytes (p < 0.01), while LPS-induced neonatal cytokines were maintained or aggravated (p < 0.05). Conclusion: Our data demonstrate a considerable pro-inflammatory capacity of Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of TLR2 and TLR4 expression may shape host susceptibility to inflammation.


Diverging effects of premature birth and bronchopulmonary dysplasia on exercise capacity and physical activity - a case control study.

  • Katharina Ruf‎ et al.
  • Respiratory research‎
  • 2019‎

Extreme prematurity has been associated with exercise intolerance and reduced physical activity. We hypothesized that children with bronchopulmonary dysplasia (BPD) would be especially affected based on long-term lung function impairments. Therefore, the objective of this study was to compare exercise capacity and habitual physical activity between children born very and extremely preterm with and without BPD and term-born children.


Ureaplasma Species Modulate Cytokine and Chemokine Responses in Human Brain Microvascular Endothelial Cells.

  • Christine Silwedel‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Ureaplasma species are common colonizers of the adult genitourinary tract and often considered as low-virulence commensals. Intraamniotic Ureaplasma infections, however, facilitate chorioamnionitis and preterm birth, and cases of Ureaplasma-induced neonatal sepsis, pneumonia, and meningitis raise a growing awareness of their clinical relevance. In vitro studies are scarce but demonstrate distinct Ureaplasma-driven impacts on immune mechanisms. The current study addressed cytokine and chemokine responses upon exposure of native or lipopolysaccharide (LPS) co-stimulated human brain microvascular endothelial cells (HBMEC) to Ureaplasma urealyticum or U. parvum, using qRT-PCR, RNA sequencing, multi-analyte immunoassay, and flow cytometry. Ureaplasma exposure in native HBMEC reduced monocyte chemoattractant protein (MCP)-3 mRNA expression (p < 0.01, vs. broth). In co-stimulated HBMEC, Ureaplasma spp. attenuated LPS-evoked mRNA responses for C-X-C chemokine ligand 5, MCP-1, and MCP-3 (p < 0.05, vs. LPS) and mitigated LPS-driven interleukin (IL)-1α protein secretion, as well as IL-8 mRNA and protein responses (p < 0.05). Furthermore, Ureaplasma isolates increased C-X-C chemokine receptor 4 mRNA levels in native and LPS co-stimulated HBMEC (p < 0.05). The presented results may imply immunomodulatory capacities of Ureaplasma spp. which may ultimately promote chronic colonization and long-term neuroinflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: