Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Learning changes the attentional status of prospective memories.

  • Dirk van Moorselaar‎ et al.
  • Psychonomic bulletin & review‎
  • 2016‎

Objects in visual working memory (VWM) that are only prospectively relevant can nevertheless affect the guidance of attention in an ongoing visual search task. Here we investigated whether learning changes the attentional status of such prospective memories. Observers performed a visual search while holding an item in memory for a later memory test. This prospective memory was then repeated for several trials. When the memory was new, it interfered with the ongoing search task. However, with repetition, memory performance increased but memory-based interference rapidly diminished, suggesting that observers learned to shield the prospective memory from the ongoing task. This contrasts with earlier findings showing stronger attentional biases from learned memories when these are immediately task-relevant. Interestingly, interference resurfaced again in anticipation of a new memory, suggesting a reactivation of VWM. These effects were sensitive to task context, indicating that the attentional status of prospective memories is flexible.


From ERPs to MVPA Using the Amsterdam Decoding and Modeling Toolbox (ADAM).

  • Johannes J Fahrenfort‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

In recent years, time-resolved multivariate pattern analysis (MVPA) has gained much popularity in the analysis of electroencephalography (EEG) and magnetoencephalography (MEG) data. However, MVPA may appear daunting to those who have been applying traditional analyses using event-related potentials (ERPs) or event-related fields (ERFs). To ease this transition, we recently developed the Amsterdam Decoding and Modeling (ADAM) toolbox in MATLAB. ADAM is an entry-level toolbox that allows a direct comparison of ERP/ERF results to MVPA results using any dataset in standard EEGLAB or Fieldtrip format. The toolbox performs and visualizes multiple-comparison corrected group decoding and forward encoding results in a variety of ways, such as classifier performance across time, temporal generalization (time-by-time) matrices of classifier performance, channel tuning functions (CTFs) and topographical maps of (forward-transformed) classifier weights. All analyses can be performed directly on raw data or can be preceded by a time-frequency decomposition of the data in which case the analyses are performed separately on different frequency bands. The figures ADAM produces are publication-ready. In the current manuscript, we provide a cookbook in which we apply a decoding analysis to a publicly available MEG/EEG dataset involving the perception of famous, non-famous and scrambled faces. The manuscript covers the steps involved in single subject analysis and shows how to perform and visualize a subsequent group-level statistical analysis. The processing pipeline covers computation and visualization of group ERPs, ERP difference waves, as well as MVPA decoding results. It ends with a comparison of the differences and similarities between EEG and MEG decoding results. The manuscript has a level of description that allows application of these analyses to any dataset in EEGLAB or Fieldtrip format.


Priming resolves perceptual ambiguity in visual search: evidence from behaviour and electrophysiology.

  • Christian N L Olivers‎ et al.
  • Vision research‎
  • 2010‎

Visual search for a target among distractors is often speeded when the target-defining feature is repeated from trial to trial, compared to when it changes. It has been proposed that whether this intertrial priming effect is perceptual in nature or not, and how strong it is, depends on the perceptual ambiguity of the display. Using the event-related potential (ERP) method, Experiment 1 assessed whether perceptual ambiguity indeed resulted in increased priming, by comparing target repetitions and changes in a condition with a target-resembling distractor to a condition without such a distractor. Priming effects on response times were indeed greater in the presence of a distractor. Moreover, EEG analyses revealed latency shifts and amplitude differences in the P1 and N2pc components for the same condition, consistent with a perceptual locus of intertrial priming. Experiment 2 confirmed this by varying the perceptual similarity of the distractor to the target. Priming benefits increased with increasing similarity.


Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition.

  • Joram van Driel‎ et al.
  • NeuroImage‎
  • 2017‎

Attention during visual search is thought to be guided by an active visual working memory (VWM) representation of the search target. We tested the hypothesis that a VWM representation used for searching a target among competing information (a "search template") is distinct from VWM representations used for simple recognition tasks, without competition. We analyzed EEG from 20 human participants while they performed three different VWM-based visual detection tasks. All tasks started with identical lateralized VWM cues, but differed with respect to the presence and nature of competing distractors during the target display at test, where participants performed a simple recognition task without distractors, or visual search in pop-out (distinct) and serial (non-distinct) search displays. Performance was worst for non-distinct search, and best for simple recognition. During the one second delay period between cue and test, we observed robust suppression of EEG dynamics in the alpha (8-14Hz) band over parieto-occipital sites contralateral to the relevant VWM item, both in terms of local power as well as interregional phase synchrony within a posterior-parietal network. Importantly, these lateralization dynamics were more strongly expressed prior to search compared to simple recognition. Furthermore, before the VWM cue, alpha phase synchrony between prefrontal and mid-posterior-parietal sites was strongest for non-distinct search, reflecting enhanced anticipatory control prior to VWM encoding. Directional connectivity analyses confirmed this effect to be in an anterior-to-posterior direction. Together, these results provide evidence for frontally mediated top-down control of VWM in preparation of visual search.


Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search.

  • Ingmar E J de Vries‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Current models of visual search assume that search is guided by an active visual working memory representation of what we are currently looking for. This attentional template for currently relevant stimuli can be dissociated from accessory memory representations that are only needed prospectively, for a future task, and that should be prevented from guiding current attention. However, it remains unclear what electrophysiological mechanisms dissociate currently relevant (serving upcoming selection) from prospectively relevant memories (serving future selection). We measured EEG of 20 human subjects while they performed two consecutive visual search tasks. Before the search tasks, a cue instructed observers which item to look for first (current template) and which second (prospective template). During the delay leading up to the first search display, we found clear suppression of α band (8-14 Hz) activity in regions contralateral to remembered items, comprising both local power and interregional phase synchronization within a posterior parietal network. Importantly, these lateralization effects were stronger when the memory item was currently relevant (i.e., for the first search) compared with when it was prospectively relevant (i.e., for the second search), consistent with current templates being prioritized over future templates. In contrast, event-related potential analysis revealed that the contralateral delay activity was similar for all conditions, suggesting no difference in storage. Together, these findings support the idea that posterior α oscillations represent a state of increased processing or excitability in task-relevant cortical regions, and reflect enhanced cortical prioritization of memory representations that serve as a current selection filter.SIGNIFICANCE STATEMENT Our days are filled with looking for relevant objects while ignoring irrelevant visual information. Such visual search activity is thought to be driven by current goals activated in working memory. However, working memory not only serves current goals, but also future goals, with differential impact upon visual selection. Little is known about how the brain differentiates between current and future goals. Here we show, for the first time, that modulations of brain oscillations in the EEG α frequency band in posterior cortex can dissociate current from future search goals in working memory. Moreover, the dynamics of these oscillations uncover how we flexibly switch focus between memory representations. Together, we reveal how the brain assigns priority for selection.


EEG dynamics reveal a dissociation between storage and selective attention within working memory.

  • Eren Günseli‎ et al.
  • Scientific reports‎
  • 2019‎

Selective attention plays a prominent role in prioritizing information in working memory (WM), improving performance for attended representations. However, it remains unclear whether unattended WM representations suffer from information loss. Here we tested the hypothesis that within WM, selectively attending to an item and stopping storing other items are independent mechanisms. We recorded EEG while participants performed a WM recall task in which the item most likely to be tested was cued retrospectively during retention. By manipulating retro-cue reliability (i.e., the ratio of valid to invalid cue trials), we varied the incentive to retain non-cued items. Storage and selective attention in WM were measured during the retention interval by contralateral delay activity (CDA) and contralateral alpha power suppression, respectively. Soon after highly reliable cues, the cued item was attended, and non-cued items suffered information loss. However, for less reliable cues, initially the cued item was attended, but unattended items were kept in WM. Later during the delay, previously unattended items suffered information loss despite now attention being reallocated to their locations, presumably to strengthen their weakening traces. These results show that storage and attention in WM are distinct processes that can behave differently depending on the relative importance of representations.


The time course of protecting a visual memory representation from perceptual interference.

  • Dirk van Moorselaar‎ et al.
  • Frontiers in human neuroscience‎
  • 2014‎

Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the stimulus onset asynchrony (SOA) between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed.


Lack of Free Choice Reveals the Cost of Having to Search for More Than One Object.

  • Eduard Ort‎ et al.
  • Psychological science‎
  • 2017‎

It is debated whether people can actively search for more than one object or whether this results in switch costs. Using a gaze-contingent eye-tracking paradigm, we revealed a crucial role for cognitive control in multiple-target search. We instructed participants to simultaneously search for two target objects presented among distractors. In one condition, both targets were available, which gave the observer free choice of what to search for and allowed for proactive control. In the other condition, only one of the two targets was available, so that the choice was imposed, and a reactive mechanism would be required. No switch costs emerged when target choice was free, but switch costs emerged reliably when targets were imposed. Bridging contradictory findings, the results are consistent with models of visual selection in which only one attentional template actively drives selection and in which the efficiency of switching targets depends on the type of cognitive control allowed for by the environment.


Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection.

  • Johannes Jacobus Fahrenfort‎ et al.
  • Scientific reports‎
  • 2017‎

The primary electrophysiological marker of feature-based selection is the N2pc, a lateralized posterior negativity emerging around 180-200 ms. As it relies on hemispheric differences, its ability to discriminate the locus of focal attention is severely limited. Here we demonstrate that multivariate analyses of raw EEG data provide a much more fine-grained spatial profile of feature-based target selection. When training a pattern classifier to determine target position from EEG, we were able to decode target positions on the vertical midline, which cannot be achieved using standard N2pc methodology. Next, we used a forward encoding model to construct a channel tuning function that describes the continuous relationship between target position and multivariate EEG in an eight-position display. This model can spatially discriminate individual target positions in these displays and is fully invertible, enabling us to construct hypothetical topographic activation maps for target positions that were never used. When tested against the real pattern of neural activity obtained from a different group of subjects, the constructed maps from the forward model turned out statistically indistinguishable, thus providing independent validation of our model. Our findings demonstrate the power of multivariate EEG analysis to track feature-based target selection with high spatial and temporal precision.


Content or status: Frontal and posterior cortical representations of object category and upcoming task goals in working memory.

  • Katya Olmos-Solis‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2021‎

To optimize task sequences, the brain must differentiate between current and prospective goals. We previously showed that currently and prospectively relevant object representations in working memory can be dissociated within object-selective cortex. Based on other recent studies indicating that a range of brain areas may be involved in distinguishing between currently relevant and prospectively relevant information in working memory, here we conducted multivoxel pattern analyses of fMRI activity in additional posterior areas (specifically early visual cortex and the intraparietal sulcus) as well as frontal areas (specifically the frontal eye fields and lateral prefrontal cortex). We assessed whether these areas represent the memory content, the current versus prospective status of the memory, or both. On each trial, participants memorized an object drawn from three different categories. The object was the target for either a first task (currently relevant), a second task (prospectively relevant), or for neither task (irrelevant). The results revealed a division of labor across brain regions: While posterior areas preferentially coded for content (i.e., the category), frontal areas carried information about the current versus prospective relevance status of the memory, irrespective of the category. Intraparietal sulcus revealed both strong category- and status-sensitivity, consistent with its hub function of combining stimulus and priority signals. Furthermore, cross-decoding analyses revealed that while current and prospective representations were similar prior to search, they became dissimilar during search, in posterior as well as frontal areas. The findings provide further evidence for a dissociation between content and control networks in working memory.


Attentional tuning resets after failures of perceptual awareness.

  • Paul E Dux‎ et al.
  • PloS one‎
  • 2013‎

Key to successfully negotiating our environment is our ability to adapt to current settings based on recent experiences and behaviour. Response conflict paradigms (e.g., the Stroop task) have provided evidence for increases in executive control after errors, leading to slowed responses that are more likely to be correct, and less susceptible to response congruency effects. Here we investigate whether failures of perceptual awareness, rather than failures at decisional or response stages of information processing, lead to similar adjustments in visual attention. We employed an attentional blink task in which subjects often fail to consciously register the second of two targets embedded in a rapid serial visual presentation stream of distractors, and examined how target errors influence performance on subsequent trials. Performance was inferior after Target 2 errors and these inter-trial effects were independent of the temporal lag between the targets and were not due to more global changes in attention across runs of trials. These results shed light on the nature of attentional calibration in response to failures of perceptual consciousness.


Frontal cortex differentiates between free and imposed target selection in multiple-target search.

  • Eduard Ort‎ et al.
  • NeuroImage‎
  • 2019‎

Cognitive control can involve proactive (preparatory) and reactive (corrective) mechanisms. Using a gaze-contingent eye tracking paradigm combined with fMRI, we investigated the involvement of these different modes of control and their underlying neural networks, when switching between different targets in multiple-target search. Participants simultaneously searched for two possible targets presented among distractors, and selected one of them. In one condition, only one of the targets was available in each display, so that the choice was imposed, and reactive control would be required. In the other condition, both targets were present, giving observers free choice over target selection, and allowing for proactive control. Switch costs emerged only when targets were imposed and not when target selection was free. We found differential levels of activity in the frontoparietal control network depending on whether target switches were free or imposed. Furthermore, we observed core regions of the default mode network to be active during target repetitions, indicating reduced control on these trials. Free and imposed switches jointly activated parietal and posterior frontal cortices, while free switches additionally activated anterior frontal cortices. These findings highlight unique contributions of proactive and reactive control during visual search.


Decoding the status of working memory representations in preparation of visual selection.

  • Ingmar E J de Vries‎ et al.
  • NeuroImage‎
  • 2019‎

Daily life is filled with sequences of multiple tasks, each with their own relevant perceptual input. Working memory needs to dissociate representations that drive attention towards currently relevant information from prospective representations that are needed for future tasks, but that until then should be prevented from guiding attention. Yet, little is known about how the brain initiates and controls such sequential prioritization of selection. In the current study we recorded EEG while subjects remembered a color as the target template for one of two sequential search tasks, thus making it either currently relevant (when it was the target for the first search) or prospectively relevant (when it was the target for the second search) prior to the task sequence. Using time-frequency specific linear classifiers, we were able to predict the priority status (current versus prospective) of the memory representation from multivariate patterns of delta (2-4 Hz) and non-lateralized alpha power (8-14 Hz) during both delay periods. The delta band was only transiently involved when initializing the priority status at the start of the first delay, or when switching priority during the second delay, which we interpret as reflecting the momentary top-down control over prioritization. In contrast, alpha power decoding was based on a more stable pattern of activity that generalized across time both within and between delay periods, which we interpret as reflecting a difference in the prioritized memory representations themselves. Taken together, we reveal the involvement of a complex, distributed and dynamic spatiotemporal landscape of frequency-specific oscillatory activity in controlling prioritization of information within working memory.


Extrafoveal attentional capture by object semantics.

  • Antje Nuthmann‎ et al.
  • PloS one‎
  • 2019‎

There is ongoing debate on whether object meaning can be processed outside foveal vision, making semantics available for attentional guidance. Much of the debate has centred on whether objects that do not fit within an overall scene draw attention, in complex displays that are often difficult to control. Here, we revisited the question by reanalysing data from three experiments that used displays consisting of standalone objects from a carefully controlled stimulus set. Observers searched for a target object, as per auditory instruction. On the critical trials, the displays contained no target but objects that were semantically related to the target, visually related, or unrelated. Analyses using (generalized) linear mixed-effects models showed that, although visually related objects attracted most attention, semantically related objects were also fixated earlier in time than unrelated objects. Moreover, semantic matches affected the very first saccade in the display. The amplitudes of saccades that first entered semantically related objects were larger than 5° on average, confirming that object semantics is available outside foveal vision. Finally, there was no semantic capture of attention for the same objects when observers did not actively look for the target, confirming that it was not stimulus-driven. We discuss the implications for existing models of visual cognition.


Pupil Dilation Reflects Task Relevance Prior to Search.

  • Katya Olmos-Solis‎ et al.
  • Journal of cognition‎
  • 2018‎

When observers search for a specific target, it is assumed that they activate a representation of the task relevant object in visual working memory (VWM). This representation - often referred to as the template - guides attention towards matching visual input. In two experiments we tested whether the pupil response can be used to differentiate stimuli that match the task-relevant template from irrelevant input. Observers memorized a target color to be searched for in a multi-color visual search display, presented after a delay period. In Experiment 1, one color appeared at the start of the trial, which was then automatically the search template. In Experiments 2, two colors were presented, and a retro-cue indicated which of these was relevant for the upcoming search task. Crucially, before the search display appeared, we briefly presented one colored probe stimulus. The probe could match either the relevant-template color, the non-cued color (irrelevant), or be a new color not presented in the trial. We measured the pupil response to the probe as a signature of task relevance. Experiment 1 showed significantly smaller pupil size in response to probes matching the search template than for irrelevant colors. Experiment 2 replicated the template matching effect and allowed us to rule out that it was solely due to repetition priming. Taken together, we show that the pupil responds selectively to participants' target template prior to search.


Priority Switches in Visual Working Memory are Supported by Frontal Delta and Posterior Alpha Interactions.

  • Ingmar E J de Vries‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2018‎

Visual working memory (VWM) distinguishes between representations relevant for imminent versus future perceptual goals. We investigated how the brain sequentially prioritizes visual working memory representations that serve consecutive tasks. Observers remembered two targets for a sequence of two visual search tasks, thus making one target currently relevant, and the other prospectively relevant. We show that during the retention interval prior to the first search, lateralized parieto-occipital EEG alpha (8-14 Hz) suppression is stronger for current compared with prospective search targets. Crucially, between the first and second search task, this difference in posterior alpha lateralization reverses, reflecting the change in priority states of the two target representations. Connectivity analyses indicate that this switch in posterior alpha lateralization is driven by frontal delta/low-theta (2-6 Hz) activity. Moreover, this frontal low-frequency signal also predicts task performance after the switch. We thus obtained evidence for large-scale network interactions underlying the flexible shifting between the priority states of multiple memory representations in VWM.


A matter of availability: sharper tuning for memorized than for perceived stimulus features.

  • Samson Chota‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2023‎

Our visual environment is relatively stable over time. An optimized visual system could capitalize on this by devoting less representational resources to objects that are physically present. The vividness of subjective experience, however, suggests that externally available (perceived) information is more strongly represented in neural signals than memorized information. To distinguish between these opposing predictions, we use EEG multivariate pattern analysis to quantify the representational strength of task-relevant features in anticipation of a change-detection task. Perceptual availability was manipulated between experimental blocks by either keeping the stimulus available on the screen during a 2-s delay period (perception) or removing it shortly after its initial presentation (memory). We find that task-relevant (attended) memorized features are more strongly represented than irrelevant (unattended) features. More importantly, we find that task-relevant features evoke significantly weaker representations when they are perceptually available compared with when they are unavailable. These findings demonstrate that, contrary to what subjective experience suggests, vividly perceived stimuli elicit weaker neural representations (in terms of detectable multivariate information) than the same stimuli maintained in visual working memory. We hypothesize that an efficient visual system spends little of its limited resources on the internal representation of information that is externally available anyway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: