Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect.

  • Shang-Zhong Xu‎ et al.
  • British journal of pharmacology‎
  • 2005‎

1 2-aminoethoxydiphenyl borate (2-APB) has been widely used to examine the roles of inositol 1,4,5-trisphosphate receptors (IP3Rs) and store-operated Ca2+ entry and is an emerging modulator of cationic channels encoded by transient receptor potential (TRP) genes. 2 Using Ca2+-indicator dye and patch-clamp recording we first examined the blocking effect of 2-APB on human TRPC5 channels expressed in HEK-293 cells. 3 The concentration-response curve has an IC50 of 20 microM and slope close to 1.0, suggesting one 2-APB molecule binds per channel. The blocking effect is not shared by other Ca2+ channel blockers including methoxyverapamil, nifedipine, N-propargylnitrendipine, or berberine. 4 In whole-cell and excised membrane patch recordings, 2-APB acts from the extracellular but not intracellular face of the membrane. 5 Block of TRPC5 by 2-APB is less at positive voltages, suggesting that it enters the electric field or acts by modulating channel gating. 6 2-APB also blocks TRPC6 and TRPM3 expressed in HEK-293 cells, but not TRPM2. 7 Block of TRP channels by 2-APB may be relevant to cell proliferation because 2-APB has a greater inhibitory effect on proliferation in cells overexpressing TRPC5. 8 Our data indicate a specific and functionally important binding site on TRPC5 that enables block by 2-APB. The site is only available via an extracellular route and the block shows mild voltage-dependence.


Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid.

  • Robert Kraft‎ et al.
  • British journal of pharmacology‎
  • 2006‎

1. TRPM2 is a Ca2+ -permeable nonselective cation channel activated by intracellular ADP-ribose (ADPR) and by hydrogen peroxide (H2O2). We investigated the modulation of TRPM2 activity by N-(p-amylcinnamoyl)anthranilic acid (ACA). ACA has previously been reported to inhibit phospholipase A2 (PLA2). 2. Using patch-clamp and calcium-imaging techniques, we show that extracellular application of 20 microM ACA completely blocked ADPR-induced whole-cell currents and H2O2-induced Ca2+ signals (IC50 = 1.7 microM) in HEK293 cells transfected with human TRPM2. Two other PLA2 inhibitors, p-bromophenacyl bromide (BPB; 100 microM) and arachidonyl trifluoromethyl ketone (20 microM), had no significant effect on ADPR-stimulated TRPM2 activity. 3. Inhibition of TRPM2 whole-cell currents by ACA was voltage independent and accelerated at decreased pH. ACA was ineffective when applied intracellularly. The single-channel conductance was not changed during ACA treatment, suggesting a reduction of TRPM2 open probability by modulating channel gating. 4. ACA (20 microM) also blocked currents through human TRPM8 and TRPC6 expressed in HEK293 cells, while BPB (100 microM) was ineffective. TRPC6-mediated currents (IC50 = 2.3 microM) and TRPM8-induced Ca2+ signals (IC50 = 3.9 microM) were blocked in a concentration-dependent manner. 5. ADPR-induced currents in human U937 cells, endogeneously expressing TRPM2 protein, were fully suppressed by 20 microM ACA. 6. Our data indicate that ACA modulates the activity of different TRP channels independent of PLA2 inhibition. Owing to its high potency and efficacy ACA can serve, in combination with other blockers, as a useful tool for studying the unknown function of TRPM2 in native cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: