Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Ca2+-activated Cl- channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons.

  • Carolina Gonzalez-Silva‎ et al.
  • PloS one‎
  • 2013‎

The Ca(2+)-activated Cl(-) channel is considered a key constituent of odor transduction. Odorant binding to a specific receptor in the cilia of olfactory sensory neurons (OSNs) triggers a cAMP cascade that mediates the opening of a cationic cyclic nucleotide-gated channel (CNG), allowing Ca(2+) influx. Ca(2+) ions activate Cl(-) channels, generating a significant Cl(-) efflux, with a large contribution to the receptor potential. The Anoctamin 2 channel (ANO2) is a major constituent of the Cl(-) conductance, but its knock-out has no impairment of behavior and only slightly reduces field potential odorant responses of the olfactory epithelium. Likely, an additional Ca(2+)-activated Cl(-) channel of unknown molecular identity is also involved. In addition to ANO2, we detected two members of the ClCa family of Ca(2+)-activated Cl(-) channels in the rat olfactory epithelium, ClCa4l and ClCa2. These channels, also expressed in the central nervous system, may correspond to odorant transduction channels. Whole Sprague Dawley olfactory epithelium nested RT-PCR and single OSNs established that the mRNAs of both channels are expressed in OSNs. Real time RT-PCR and full length sequencing of amplified ClCa expressed in rat olfactory epithelium indicated that ClCa4l is the most abundant. Immunoblotting with an antibody recognizing both channels revealed immunoreactivity in the ciliary membrane. Immunochemistry of olfactory epithelium and OSNs confirmed their ciliary presence in a subset of olfactory sensory neurons. The evidence suggests that ClCa4l and ClCa2 might play a role in odorant transduction in rat olfactory cilia.


Cdk5 regulates Rap1 activity.

  • Elias Utreras‎ et al.
  • Neurochemistry international‎
  • 2013‎

Rap1 signaling is important for migration, differentiation, axonal growth, and during neuronal polarity. Rap1 can be activated by external stimuli, which in turn regulates specific guanine nucleotide exchange factors such as C3G, among others. Cdk5 functions are also important to neuronal migration and differentiation. Since we found that pharmacological inhibition of Cdk5 by using roscovitine reduced Rap1 protein levels in COS-7 cells and also C3G contains three putative phosphorylation sites for Cdk5, we examined whether the Cdk5-dependent phosphorylation of C3G could affect Rap1 expression and activity. We co-transfected C3G and tet-OFF system for p35 over-expression, an activator of Cdk5 activity into COS-7 cells, and then we evaluated phosphorylation in serine residues in C3G by immunoprecipitation and Western blot. We found that p35 over-expression increased C3G-serine-phosphorylation while inhibition of p35 expression by tetracycline or inhibition of Cdk5 activity with roscovitine decreased it. Interestingly, we found that MG-132, a proteasome inhibitor, rescue Rap1 protein levels in the presence of roscovitine. Besides, C3G-serine-phosphorylation and Rap1 protein levels were reduced in brain from Cdk5(-/-) as compared with the Cdk5(+/+) brain. Finally, we found that p35 over-expression increased Rap1 activity while inhibition of p35 expression by tetracycline or roscovitine decreased Rap1 activity. These results suggest that Cdk5-mediated serine-phosphorylation of C3G may control Rap1 stability and activity, and this may potentially impact various neuronal functions such as migration, differentiation, and polarity.


Phosphorylation of p27Kip1 at Thr187 by cyclin-dependent kinase 5 modulates neural stem cell differentiation.

  • Ya-Li Zheng‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

Cyclin-dependent kinase 5 (Cdk5) plays a key role in the development of the mammalian nervous system; it phosphorylates a number of targeted proteins involved in neuronal migration during development to synaptic activity in the mature nervous system. Its role in the initial stages of neuronal commitment and differentiation of neural stem cells (NSCs), however, is poorly understood. In this study, we show that Cdk5 phosphorylation of p27(Kip1) at Thr187 is crucial to neural differentiation because 1) neurogenesis is specifically suppressed by transfection of p27(Kip1) siRNA into Cdk5(+/+) NSCs; 2) reduced neuronal differentiation in Cdk5(-/-) compared with Cdk5(+/+) NSCs; 3) Cdk5(+/+) NSCs, whose differentiation is inhibited by a nonphosphorylatable mutant, p27/Thr187A, are rescued by cotransfection of a phosphorylation-mimicking mutant, p27/Thr187D; and 4) transfection of mutant p27(Kip1) (p27/187A) into Cdk5(+/+) NSCs inhibits differentiation. These data suggest that Cdk5 regulates the neural differentiation of NSCs by phosphorylation of p27(Kip1) at theThr187 site. Additional experiments exploring the role of Ser10 phosphorylation by Cdk5 suggest that together with Thr187 phosphorylation, Ser10 phosphorylation by Cdk5 promotes neurite outgrowth as neurons differentiate. Cdk5 phosphorylation of p27(Kip1), a modular molecule, may regulate the progress of neuronal differentiation from cell cycle arrest through differentiation, neurite outgrowth, and migration.


Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration.

  • Teruyuki Tanaka‎ et al.
  • Neuron‎
  • 2004‎

Mutations in the doublecortin (DCX) gene in human or targeted disruption of the cdk5 gene in mouse lead to similar cortical lamination defects in the developing brain. Here we show that Dcx is phosphorylated by Cdk5. Dcx phosphorylation is developmentally regulated and corresponds to the timing of expression of p35, the major activating subunit for Cdk5. Mass spectrometry and Western blot analysis indicate phosphorylation at Dcx residue Ser297. Phosphorylation of Dcx lowers its affinity to microtubules in vitro, reduces its effect on polymerization, and displaces it from microtubules in cultured neurons. Mutation of Ser297 blocks the effect of Dcx on migration in a fashion similar to pharmacological inhibition of Cdk5 activity. These results suggest that Dcx phosphorylation by Cdk5 regulates its actions on migration through an effect on microtubules.


Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration.

  • Satoru Takahashi‎ et al.
  • The American journal of pathology‎
  • 2010‎

Neuronal migration disorders are often identified in patients with epilepsy refractory to medical treatment. The prolonged or repeated seizures are known to cause neuronal death; however, the mechanism underlying seizure-induced neuronal death remains to be elucidated. An essential role of cyclin-dependent kinase 5 (Cdk5) in brain development has been demonstrated in Cdk5(-/-) mice, which show neuronal migration defects and perinatal lethality. Here, we show the consequences of Cdk5 deficiency in the postnatal brain by generating Cdk5 conditional knockout mice, in which Cdk5is selectively eliminated from neurons in the developing forebrain. The conditional mutant mice were viable, but exhibited complex neurological deficits including seizures, tremors, and growth retardation. The forebrain not only showed disruption of layering, but also neurodegenerative changes accompanied by neuronal loss and microglial activation. The neurodegenerative changes progressed with age and were accompanied by up-regulation of the neuronal tissue-type plasminogen activator, a serine protease known to mediate microglial activation. Thus age-dependent neurodegeneration in the Cdk5 conditional knockout mouse brain invoked a massive inflammatory reaction. These findings indicate an important role of Cdk5 in inflammation, and also provide a mouse model to examine the possible involvement of inflammation in the pathogenesis of progressive cognitive decline in patients with neuronal migration disorders.


Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia.

  • Pamela J Urrutia‎ et al.
  • Journal of neurochemistry‎
  • 2017‎

Alzheimer's disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and neuronal death. Aggregated amyloid-β (Aβ) induces inflammation and oxidative stress, which have pivotal roles in the pathogenesis of AD. Hepcidin is a key regulator of systemic iron homeostasis. Recently, an anti-inflammatory response to hepcidin was reported in macrophages. Under the hypothesis that hepcidin mediates anti-inflammatory response in the brain, in this study, we evaluated the putative anti-inflammatory role of hepcidin on Aβ-activated astrocytes and microglia. Primary culture of astrocytes and microglia were treated with Aβ, with or without hepcidin, and cytokine levels were then evaluated. In addition, the toxicity of Aβ-treated astrocyte- or microglia-conditioned media was tested on neurons, evaluating cellular death and oxidative stress generation. Finally, mice were injected in the right lateral ventricle with Aβ, with or without hepcidin, and hippocampus glial activation and oxidative stress were evaluated. Pre-treatment with hepcidin reduced the expression and secretion of TNF-α and IL-6 in astrocytes and microglia treated with Aβ. Hepcidin also reduced neurotoxicity and oxidative damage triggered by conditioned media obtained from astrocytes and microglia treated with Aβ. Stereotaxic intracerebral injection of hepcidin reduced glial activation and oxidative damage triggered by Aβ injection in mice. Overall, these results are consistent with the hypothesis that in astrocytes and microglia hepcidin down-regulates the inflammatory and pro-oxidant processes induced by Aβ, thus protecting neighboring neurons. This is a newly described property of hepcidin in the central nervous system, which may be relevant for the development of strategies to prevent the neurodegenerative process associated with AD.


Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma.

  • Liang Mao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

Immature myeloid cells including myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs) promote tumour growth and metastasis by facilitating tumour transformation and angiogenesis, as well as by suppressing antitumour effector immune responses. Therefore, strategies designed to reduce MDSCs and TAMs accumulation and their activities are potentially valuable therapeutic goals. In this study, we show that negative immune checkpoint molecule B7-H3 is significantly overexpressed in human head and neck squamous cell carcinoma (HNSCC) specimen as compared with normal oral mucosa. Using immunocompetent transgenic HNSCC models, we observed that targeting inhibition of B7-H3 reduced tumour size. Flow cytometry analysis revealed that targeting inhibition of B7-H3 increases antitumour immune response by decreasing immunosuppressive cells and promoting cytotoxic T cell activation in both tumour microenvironment and macroenvironment. Our study provides direct in vivo evidence for a rationale for B7-H3 blockade as a future therapeutic strategy to treat patients with HNSCC.


GERO Cohort Protocol, Chile, 2017-2022: Community-based Cohort of Functional Decline in Subjective Cognitive Complaint elderly.

  • Andrea Slachevsky‎ et al.
  • BMC geriatrics‎
  • 2020‎

With the global population aging and life expectancy increasing, dementia has turned a priority in the health care system. In Chile, dementia is one of the most important causes of disability in the elderly and the most rapidly growing cause of death in the last 20 years. Cognitive complaint is considered a predictor for cognitive and functional decline, incident mild cognitive impairment, and incident dementia. The GERO cohort is the Chilean core clinical project of the Geroscience Center for Brain Health and Metabolism (GERO). The objective of the GERO cohort is to analyze the rate of functional decline and progression to clinical dementia and their associated risk factors in a community-dwelling elderly with subjective cognitive complaint, through a population-based study. We also aim to undertake clinical research on brain ageing and dementia disorders, to create data and biobanks with the appropriate infrastructure to conduct other studies and facilitate to the national and international scientific community access to the data and samples for research.


Metabolic switch in the aging astrocyte supported via integrative approach comprising network and transcriptome analyses.

  • Alejandro Acevedo‎ et al.
  • Aging‎
  • 2023‎

Dysregulated central-energy metabolism is a hallmark of brain aging. Supplying enough energy for neurotransmission relies on the neuron-astrocyte metabolic network. To identify genes contributing to age-associated brain functional decline, we formulated an approach to analyze the metabolic network by integrating flux, network structure and transcriptomic databases of neurotransmission and aging. Our findings support that during brain aging: (1) The astrocyte undergoes a metabolic switch from aerobic glycolysis to oxidative phosphorylation, decreasing lactate supply to the neuron, while the neuron suffers intrinsic energetic deficit by downregulation of Krebs cycle genes, including mdh1 and mdh2 (Malate-Aspartate Shuttle); (2) Branched-chain amino acid degradation genes were downregulated, identifying dld as a central regulator; (3) Ketone body synthesis increases in the neuron, while the astrocyte increases their utilization, in line with neuronal energy deficit in favor of astrocytes. We identified candidates for preclinical studies targeting energy metabolism to prevent age-associated cognitive decline.


Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPARγ agonist improves neuronal loss and early lethality.

  • Elias Utreras‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

Cyclin-dependent kinase 5 (Cdk5) is essential for brain development and function, and its deregulated expression is implicated in some of neurodegenerative diseases. We reported earlier that the forebrain-specific Cdk5 conditional knockout (cKO) mice displayed an early lethality associated with neuroinflammation, increased expression of the neuronal tissue-type plasminogen activator (tPA), and neuronal migration defects.


Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes.

  • Horacio Maldonado‎ et al.
  • Journal of neuroscience research‎
  • 2011‎

Human T-cell leukemia virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease characterized by selective loss of axons and myelin in the corticospinal tracts. This central axonopathy may originate from the impairment of anterograde axoplasmic transport. Previous work showed tau hyperphosphorylation at T(181) in cerebrospinal fluid of HAM/TSP patients. Similar hyperphosphorylation occurs in SH-SY5Y cells incubated with supernatant from MT-2 cells (HTLV-I-infected lymphocytes secreting viral proteins, including Tax) that produce neurite shortening. Tau phosphorylation at T(181) is attributable to glycogen synthase kinase 3-β (GSK3-β) and cyclin-dependent kinase 5 (CDK5) activation. Here we investigate whether neurite retraction in the SH-SY5Y model associates with concurrent changes in other tau hyperphosphorylable residues. Threonine 181 turned out to be the only tau hyperphosphorylated residue. We also evaluate the role of GSK3-β and CDK5 in this process by using specific kinase inhibitors (LiCl, TDZD-8, and roscovitine). Changes in both GSK3-β active and inactive forms were followed by measuring the regulatory phosphorylable sites (S(9) and Y(216) , inactivating and activating phosphorylation, respectively) together with changes in β-catenin protein levels. Our results showed that LiCl and TDZD-8 were unable to prevent MT-2 supernatant-mediated neurite retraction and also that neither Y(216) nor S(9) phosphorylations were changed in GSK3-β. Thus, GSK3-β seems not to play a role in T(181) hyperphosphorylation. On the other hand, the CDK5 involvement in tau phosphorylation was confirmed by both the increase in its enzymatic activity and the absence of MT-2 neurite retraction in the presence of roscovitine or CDK5 siRNA transfection.


PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma.

  • Guang-Tao Yu‎ et al.
  • Oncotarget‎
  • 2015‎

Myeloid-derived suppressor cells (MDSCs) and tumor associated macrophages (TAMs) play key roles in the tumor immune suppressive network and tumor progression. However, precise roles of programmed death-1 (PD-1) in immunological functions of MDSCs and TAMs in head and neck squamous cell carcinoma (HNSCC) have not been clearly elucidated. In the present study, we show that PD-1 and PD-L1 levels were significantly higher in human HNSCC specimen than in normal oral mucosa. MDSCs and TAMs were characterized in mice and human HNSCC specimen, correlated well with PD-1 and PD-L1 expression. αPD-1 treatment was well tolerated and significantly reduced tumor growth in the HNSCC mouse model along with significant reduction in MDSCs and TAMs in immune organs and tumors. Molecular analysis suggests a reduction in the CD47/SIRPα pathway by PD-1 blockade, which regulates MDSCs, TAMs, dendritic cell as well as effector T cells. Hence, these data identify that PD-1/PD-L1 axis is significantly increased in human and mouse HNSCC. Adoptive αPD-1 immunotherapy may provide a novel therapeutic approach to modulate the micro- and macro-environment in HNSCC.


Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

  • Wei-Ming Wang‎ et al.
  • PloS one‎
  • 2015‎

Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC). The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR) inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α) was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO) mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.


Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

  • Ismael Palacios-García‎ et al.
  • PloS one‎
  • 2015‎

Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new insights on the molecular mechanisms behind the effects of prenatal stress.


Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis.

  • Tej K Pareek‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Cyclin-dependent kinase 5 (Cdk5) is a ubiquitously expressed serine/threonine kinase. However, a requirement for Cdk5 has been demonstrated only in postmitotic neurons where there is abundant expression of its activating partners p35 and/or p39. Although hyperactivation of the Cdk5-p35 complex has been found in a variety of inflammatory neurodegenerative disorders, the potential contribution of nonneuronal Cdk5-p35 activity has not been explored in this context. We describe a previously unknown function of the Cdk5-p35 complex in T cells that is required for induction of experimental autoimmune encephalomyelitis (EAE). T cell receptor (TCR) stimulation leads to a rapid induction of Cdk5-p35 expression that is required for T lymphocyte activation. Chimeric mice lacking Cdk5 gene expression in hematopoietic tissues (Cdk5(-/-C)) are resistant to induction of EAE, and adoptive transfer of either Cdk5(-/-C) or p35(-/-) encephalitogenic lymphocytes fails to transfer disease. Moreover, our data reveal a novel mechanism involving Cdk5-mediated phosphorylation of the actin modulator coronin 1a on threonine 418. Cdk5-deficient lymphocytes lack this posttranslational modification of coronin 1a and exhibit defective TCR-induced actin polarization and reduced migration toward CCL-19. These data define a distinct role for Cdk5 in lymphocyte biology and suggest that inhibition of this kinase may be beneficial in the treatment of T cell-mediated inflammatory disorders.


Bioinformatic survey for new physiological substrates of Cyclin-dependent kinase 5.

  • Daniel A Bórquez‎ et al.
  • Genomics‎
  • 2013‎

Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase predominantly active in the nervous system where it regulates several processes such as neuronal migration, cytoskeletal dynamics, axonal guidance, and neurotransmission. We constructed a position specific scoring matrix (PSSM) based on a dataset of sites shown to be phosphorylated both in vivo and in vitro by Cdk5. This dataset was curated manually through an exhaustive search of published experimental data. We then used this PSSM to perform a search in the mouse proteome through Scansite, a web-based tool for matching sequence patterns in large databases. Considering a stringent cut-off score of 0.5, we identified 354 new putative sites present in 291 proteins. In order to assess the robustness of our results, ten random subsets (of 80 sites each) of the original dataset were used to construct new PSSMs, which were then used as input for a new Scansite search, leading to the recovery of 81% of the 354 sites by at least 5 PSSMs. In order to reduce the number of false positives in our sequence-based approach, we evaluated which of these predicted sites were phosphorylated in vivo as determined by multiple phosphoproteomics studies carried out through mass spectrometry and available in the PhosphoSitePlus database. This step resulted in a very promising list of 132 putative phosphorylation sites for Cdk5, of which, 51 are specifically phosphorylated in brain tissue, and some are involved in functions regulated by Cdk5 such as axonal growth, synaptic plasticity and neurotransmission. Other phosphorylation sites in our list suggest that Cdk5 might regulate processes through mechanisms not previously recognized such as the control of mRNA splicing.


T-cell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer.

  • Jian-Feng Liu‎ et al.
  • Molecular oncology‎
  • 2017‎

T-cell immunoglobulin mucin 3 (TIM3) contributes to immune suppression during progression of many cancers, but the precise role of TIM3 in head and neck squamous cell carcinoma (HNSCC) is not clearly understood. In this study, we report that TIM3 expression was significantly up-regulated in patients with HNSCC and associated with lymph node metastasis. Additionally, TIM3 expression was increased in patients with recurrent HNSCC and patients with preradiotherapy or prechemotherapy. We also characterized CD8+ T cells and CD11b+ CD33+ myeloid-derived suppressor cells (MDSCs) in human HNSCC, and found that their expression was positively correlated with TIM3 expression. To determine the underlying mechanism of TIM3 in immune response during HNSCC progression, we utilized the Tgfbr1/Pten 2cKO HNSCC mouse model with TIM3 overexpression. Treatment with anti-TIM3 monoclonal antibody effectively suppressed tumor growth through restoring effector T-cell function by targeting CD4+ TIM3+ cells and CD8+ TIM3+ cells and decreasing MDSCs. Our findings demonstrate TIM3 expression in patients with HNSCC and suggest anti-TIM3 immunotherapy as a novel therapeutic approach for effective treatment of HNSCC.


Leucine rich amelogenin peptide prevents ovariectomy-induced bone loss in mice.

  • Naoto Haruyama‎ et al.
  • PloS one‎
  • 2021‎

Amelogenins, major extra cellular matrix proteins of developing tooth enamel, are predominantly expressed by ameloblasts and play significant roles in the formation of enamel. Recently, amelogenin has been detected in various epithelial and mesenchymal tissues, implicating that it might have distinct functions in various tissues. We have previously reported that leucine rich amelogenin peptide (LRAP), one of the alternate splice forms of amelogenin, regulates receptor activator of NF-kappa B ligand (RANKL) expression in cementoblast/periodontal ligament cells, suggesting that the amelogenins, especially LRAP, might function as a signaling molecule in bone metabolism. The objective of this study was to identify and define LRAP functions in bone turnover. We engineered transgenic (TgLRAP) mice using a murine 2.3kb α1(I)-collagen promoter to drive expression of a transgene consisting of LRAP, an internal ribosome entry site (IRES) and enhanced green fluorescent protein (EGFP) to study functions of LRAP in bone formation and resorption. Calvarial cell cultures from the TgLRAP mice showed increased alkaline phosphatase (ALP) activity and increased formation of mineralized nodules compared to the cells derived from wild-type (WT) mice. The TgLRAP calvarial cells also showed an inhibitory effect on osteoclastogenesis in vitro. Gene expression comparison by quantitative polymerase chain reaction (Q-PCR) in calvarial cells indicated that bone formation makers such as Runx2, Alp, and osteocalcin were increased in TgLRAP compared to the WT cells. Meanwhile, Rankl expression was decreased in the TgLRAP cells in vitro. The ovariectomized (OVX) TgLRAP mice resisted bone loss induced by ovariectomy resulting in higher bone mineral density in comparison to OVX WT mice. The quantitative analysis of calcein intakes indicated that the ovariectomy resulted in increased bone formation in both WT and TgLRAP mice; OVX TgLRAP appeared to show the most remarkably increased bone formation. The parameters for bone resorption in tissue sections showed increased number of osteoclasts in OVX WT, but not in OVX TgLRAP over that of sham operated WT or TgLRAP mice, supporting the observed bone phenotypes in OVX mice. This is the first report identifying that LRAP, one of the amelogenin splice variants, affects bone turnover in vivo.


Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1.

  • Imran Khan‎ et al.
  • Scientific reports‎
  • 2021‎

The severity of tissue injury in burn wounds from associated inflammatory and immune sequelae presents a significant clinical management challenge. Among various biophysical wound management approaches, low dose biophotonics treatments, termed Photobiomodulation (PBM) therapy, has gained recent attention. One of the PBM molecular mechanisms of PBM treatments involves photoactivation of latent TGF-β1 that is capable of promoting tissue healing and regeneration. This work examined the efficacy of PBM treatments in a full-thickness burn wound healing in C57BL/6 mice. We first optimized the PBM protocol by monitoring tissue surface temperature and histology. We noted this dynamic irradiance surface temperature-monitored PBM protocol improved burn wound healing in mice with elevated TGF-β signaling (phospho-Smad2) and reduced inflammation-associated gene expression. Next, we investigated the roles of individual cell types involved in burn wound healing following PBM treatments and noted discrete effects on epithelieum, fibroblasts, and macrophage functions. These responses appear to be mediated via both TGF-β dependent and independent signaling pathways. Finally, to investigate specific contributions of TGF-β1 signaling in these PBM-burn wound healing, we utilized a chimeric TGF-β1/β3 knock-in (TGF-β1Lβ3/Lβ3) mice. PBM treatments failed to activate the chimeric TGF-β1Lβ3/Lβ3 complex and failed to improve burn wound healing in these mice. These results suggest activation of endogenous latent TGF-β1 following PBM treatments plays a key role in burn wound healing. These mechanistic insights can improve the safety and efficacy of clinical translation of PBM treatments for tissue healing and regeneration.


p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing.

  • Rafael Andres Posada-Duque‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles (NFT) and prevented neuronal loss in triple transgenic Alzheimer's mice. Here, we report that CDK5 RNAi protected against glutamate-mediated excitotoxicity using primary hippocampal neurons transduced with adeno-associated virus 2.5 viral vector eGFP-tagged scrambled or CDK5 shRNA-miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down-stream Rho GTPase activity. Furthermore, p35 over-expression and constitutively active Rac1 mimicked CDK5 silencing-induced neuroprotection. In addition, 3xTg-Alzheimer's disease mice (24 months old) were injected in the hippocampus with scrambled or CDK5 shRNA-miR, and spatial learning and memory were performed 3 weeks post-injection using 'Morris' water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer's mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: