2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils.

  • Julia Barthelmes‎ et al.
  • Brain, behavior, and immunity‎
  • 2015‎

Ceramide synthases (CerS) synthesise ceramides of defined acyl chain lengths, which are thought to mediate cellular processes in a chain length-dependent manner. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed a significant elevation of CerS2 and its products, C24-ceramides, in CD11b(+) cells (monocytes and neutrophils) isolated from blood. This result correlates with the clinical finding that CerS2 mRNA expression and C24-ceramide levels were significantly increased by 2.2- and 1.5-fold, respectively, in white blood cells of MS patients. The increased CerS2 mRNA/C24-ceramide expression in neutrophils/monocytes seems to mediate pro-inflammatory effects, since a specific genetic deletion of CerS2 in blood cells or a total genetic deletion of CerS2 significantly delayed the onset of clinical symptoms, due to a reduced infiltration of immune cells, in particular neutrophils, into the central nervous system. CXCR2 chemokine receptors, expressed on neutrophils, promote the migration of neutrophils into the central nervous system, which is a prerequisite for the recruitment of further immune cells and the inflammatory process that leads to the development of MS. Interestingly, neutrophils isolated from CerS2 null EAE mice, as opposed to WT EAE mice, were characterised by significantly lower CXCR2 receptor mRNA expression resulting in their reduced migratory capacity towards CXCL2. Most importantly, G-CSF-induced CXCR2 expression was significantly reduced in CerS2 null neutrophils and their migratory capacity was significantly impaired. In conclusion, our data strongly indicate that G-CSF-induced CXCR2 expression is regulated in a CerS2-dependent manner and that CerS2 thereby promotes the migration of neutrophils, thus, contributing to inflammation and the development of EAE and MS.


FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke.

  • Robert Brunkhorst‎ et al.
  • PloS one‎
  • 2013‎

The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors.


Distribution Pattern Analysis of Cortical Brain Infarcts on Diffusion-Weighted Magnetic Resonance Imaging: A Hypothesis-Generating Approach to the Burden of Silent Embolic Stroke.

  • Martin A Schaller-Paule‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Background In patients with covert cerebrovascular disease or proximal source of embolism, embolic silent brain infarction may precede major stroke events. Therefore, characterization of particularly cortical silent brain infarction is essential for identifying affected patients and commencing adequate secondary prevention. This study aimed to investigate differences in the distribution pattern of cortical ischemic stroke lesions to assess potential predilection sites of cortical silent brain infarction. Methods and Results We prospectively included all consecutive patients with stroke presenting from January 1 to December 31, 2018. Diffusion-weighted imaging lesions were used to generate voxel-based lesion maps and assigned to atlas-based cortical regions of interest in middle cerebral artery territories. Each region-of-interest lesion frequency was related to the respective region-of-interest volume to identify frequently affected and underrepresented cerebral cortex areas. Diffusion-weighted imaging data for voxel-based lesion maps were available in 334 out of 633 patients. Primary analysis revealed that small- (<0.24 cc) and medium-sized (0.24-2640 cc) lesions distributed predominantly along regions associated with sensorimotor or language function. Detailed analysis within middle cerebral artery territories showed an approximated frequency of missed cortical stroke lesions of up to 67% in the right and 69% in the left hemisphere. In particular, the frontal, temporal, and occipital cortices were underrepresented. Larger lesion size and areas associated with higher cortical function led to hospital admission. Conclusions Cortical brain infarcts in hospitalized patients are not dispersed equally but are predominantly located in brain structures associated with motor control and sensory and language function. Matching underrepresented cerebral cortex regions to symptoms not yet associated with stroke warrants further exploration.


Coadministration of FTY720 and rt-PA in an experimental model of large hemispheric stroke-no influence on functional outcome and blood-brain barrier disruption.

  • Aijia Cai‎ et al.
  • Experimental & translational stroke medicine‎
  • 2013‎

Systemic thrombolysis with recombinant tissue plasminogen activator (rt-PA) is the standard of acute stroke care. Its potential to increase the risk of secondary intracerebral hemorrhage, especially if administered late, has been ascribed to its proteolytic activity that has detrimental effects on blood-brain barrier (BBB) integrity after stroke. FTY720 has been shown to protect endothelial barriers in several disease models such as endotoxin-induced pulmonary edema and therefore is a promising candidate to counteract the deleterious effects of rt-PA. Besides that, every putative neuroprotectant that will be eventually forwarded into clinical trials should be tested in conjunction with rt-PA.


The Acute Superficial Siderosis Syndrome - Clinical Entity, Imaging Findings, and Histopathology.

  • Lucie Friedauer‎ et al.
  • Cerebellum (London, England)‎
  • 2023‎

Superficial siderosis is a consequence of repetitive bleeding into the subarachnoid space, leading to toxic iron and hemosiderin deposits on the surface of the brain and spine. The clinical and radiological phenotypes of superficial siderosis are known to manifest over long time intervals. In contrast, this study defines the "acute superficial siderosis syndrome" and illustrates typical imaging and histopathological findings of this entity. We describe the case of a 61-year-old male patient who was diagnosed with a melanoma metastasis in the right frontal cortex in February 2019. Within a few weeks he developed a progressive syndrome characterized by cerebellar ataxia, gait disturbance, signs of myelopathy, and radiculopathy. MRI revealed ongoing hemorrhage from the metastasis into the lateral ventricle and the subarachnoid space. A semiquantitative assessment of three subsequent MRI within an 8-week period documented the rapid development of superficial siderosis along the surface of the cerebellum, the brain stem, and the lower parts of the supratentorial regions on T2*-weighted sequences. The diagnosis of a superficial siderosis was histopathologically confirmed by identifying iron and hemosiderin deposits on the cortex along with astrogliosis. The recognition of this "acute superficial siderosis syndrome" triggered surgical removal of the hemorrhagic metastasis. Based on a single case presentation, we define the "acute superficial siderosis syndrome" as a clinical entity and describe the radiological and histopathological characteristics of this entity. Early recognition of this syndrome may allow timely elimination of the bleeding source, in order to prevent further clinical deterioration.


Post-mortem serum concentrations of GFAP correlate with agony time but do not indicate a primary cerebral cause of death.

  • Benedict Breitling‎ et al.
  • PloS one‎
  • 2018‎

The astroglial protein GFAP is a blood biomarker indicative of intracerebral hemorrhage in patients with acute stroke. Due to its brain specificity and the necessity of brain damage for its detectability in blood, we hypothesized that GFAP could be an interesting marker in cases with primary cerebral cause of death, e.g., traumatic brain injury.


Warfarin anticoagulation exacerbates the risk of hemorrhagic transformation after rt-PA treatment in experimental stroke: therapeutic potential of PCC.

  • Waltraud Pfeilschifter‎ et al.
  • PloS one‎
  • 2011‎

Oral anticoagulant therapy (OAT) with warfarin is the standard of stroke prevention in patients with atrial fibrillation. Approximately 30% of patients with cardioembolic strokes are on OAT at the time of symptom onset. We investigated whether warfarin exacerbates the risk of thrombolysis-associated hemorrhagic transformation (HT) in a mouse model of ischemic stroke.


Differential expression of CD8 defines phenotypically distinct cytotoxic T cells in cancer and multiple sclerosis.

  • Tobias Burkard‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

Cytotoxic T lymphocytes take on a leading role in many immune-related diseases. They function as key effector immune cells fighting cancer cells, but they are also considerably involved in autoimmune diseases. Common to both situations, CD8+ T cells need to adapt their metabolism and effector function to the harsh and nutrient-deprived conditions of the disease-associated microenvironment.


Topographic Mapping of Isolated Thalamic Infarcts Using Vascular and Novel Probabilistic Functional Thalamic Landmarks.

  • Maximilian Rauch‎ et al.
  • Clinical neuroradiology‎
  • 2023‎

We aimed to re-evaluate the relationship between thalamic infarct (TI) localization and clinical symptoms using a vascular (VTM) and a novel functional territorial thalamic map (FTM).


Intravenous tPA therapy does not worsen acute intracerebral hemorrhage in mice.

  • Christian Foerch‎ et al.
  • PloS one‎
  • 2013‎

Tissue plasminogen activator (tPA) is the only FDA-approved treatment for reperfusing ischemic strokes. But widespread use of tPA is still limited by fears of inadvertently administering tPA in patients with intracerebral hemorrhage (ICH). Surprisingly, however, the assumption that tPA will worsen ICH has never been biologically tested. Here, we assessed the effects of tPA in two models of ICH. In a mouse model of collagenase-induced ICH, hemorrhage volumes and neurological deficits after 24 hrs were similar in saline controls and tPA-treated mice, whereas heparin-treated mice had 3-fold larger hematomas. In a model of laser-induced vessel rupture, tPA also did not worsen hemorrhage volumes, while heparin did. tPA is known to worsen neurovascular injury by amplifying matrix metalloproteinases during cerebral ischemia. In contrast, tPA did not upregulate matrix metalloproteinases in our mouse ICH models. In summary, our experimental data do not support the assumption that intravenous tPA has a deleterious effect in acute ICH. However, due to potential species differences and the inability of models to fully capture the dynamics of human ICH, caution is warranted when considering the implications of these findings for human therapy.


Patients with chronic autoimmune demyelinating polyneuropathies exhibit cognitive deficits which might be associated with CSF evidence of blood-brain barrier disturbance.

  • Yavor Yalachkov‎ et al.
  • PloS one‎
  • 2020‎

Chronic autoimmune demyelinating polyneuropathies (CADP) result in impaired sensorimotor function. However, anecdotal clinical observations suggest the development of cognitive deficits during the course of disease.


Exploring Contraindications for Thrombolysis: Risk of Hemorrhagic Transformation and Neurological Deterioration after Thrombolysis in Mice with Recent Ischemic Stroke and Hyperglycemia.

  • Sarah Gelhard‎ et al.
  • Journal of clinical medicine‎
  • 2022‎

(1) Intravenous thrombolysis with recombinant tissue plasminogen activator (rt-PA) in patients with acute ischemic stroke is limited because of several contraindications. In routine clinical practice, patients with a recent stroke are typically not treated with rt-PA in case of a recurrent ischemic event. The same applies to its use in the context of pulmonary artery embolism and myocardial infarction with a recent stroke. In this translational study, we evaluated whether rt-PA treatment after experimental ischemic stroke with or without additional hyperglycemia increases the risk for hemorrhagic transformation (HT) and worsens functional outcome regarding the old infarct area. (2) In total, 72 male C57BL/6N mice were used. Ischemic stroke (index stroke) was induced by transient middle cerebral artery occlusion (tMCAO). Mice received either rt-PA or saline 24 h or 14 days after index stroke to determine whether a recent ischemic stroke predisposes to HT. In addition to otherwise healthy mice, hyperglycemic mice were analyzed to evaluate diabetes as a second risk factor for HT. Mice designated to develop hyperglycemia were pre-treated with streptozotocin. (3) The neurological outcome in rt-PA and saline-treated normoglycemic mice did not differ significantly, either at 24 h or at 14 days. In contrast, hyperglycemic mice treated with rt-PA had a significantly worse neurological outcome (at 24 h, p = 0.02; at 14 days, p = 0.03). At 24 h after rt-PA or saline treatment, HT scores differed significantly (p = 0.02) with the highest scores within hyperglycemic mice treated with rt-PA, where notably only small petechial hemorrhages could be detected. (4) Thrombolysis after recent ischemic stroke does not increase the risk for HT or worsen the functional outcome in otherwise healthy mice. However, hyperglycemia as a second risk factor leads to neurological deterioration after rt-PA treatment, which cannot be explained by an increase of HT alone. Direct neurotoxic effects of rt-PA may play a role.


No influence of dabigatran anticoagulation on hemorrhagic transformation in an experimental model of ischemic stroke.

  • Ferdinand Bohmann‎ et al.
  • PloS one‎
  • 2012‎

Dabigatran etexilate (DE) is a new oral direct thrombin inhibitor. Clinical trials point towards a favourable risk-to-benefit profile of DE compared to warfarin. In this study, we evaluated whether hemorrhagic transformation (HT) occurs after experimental stroke under DE treatment as we have shown for warfarin.


Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling.

  • Stefanie Gurnik‎ et al.
  • Acta neuropathologica‎
  • 2016‎

The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.


Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice.

  • Waltraud Pfeilschifter‎ et al.
  • Experimental & translational stroke medicine‎
  • 2011‎

FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke.


Multicenter Prospective Analysis of Hypertrophic Olivary Degeneration Following Infratentorial Stroke (HOD-IS): Evaluation of Disease Epidemiology, Clinical Presentation, and MR-Imaging Aspects.

  • Martin A Schaller-Paule‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Introduction: Ischemic and hemorrhagic strokes in the brainstem and cerebellum with injury to the functional loop of the Guillain-Mollaret triangle (GMT) can trigger a series of events that result in secondary trans-synaptic neurodegeneration of the inferior olivary nucleus. In an unknown percentage of patients, this leads to a condition called hypertrophic olivary degeneration (HOD). Characteristic clinical symptoms of HOD progress slowly over months and consist of a rhythmic palatal tremor, vertical pendular nystagmus, and Holmes tremor of the upper limbs. Diffusion Tensor Imaging (DTI) with tractography is a promising method to identify functional pathway lesions along the cerebello-thalamo-cortical connectivity and to generate a deeper understanding of the HOD pathophysiology. The incidence of HOD development following stroke and the timeline of clinical symptoms have not yet been determined in prospective studies-a prerequisite for the surveillance of patients at risk. Methods and Analysis: Patients with ischemic and hemorrhagic strokes in the brainstem and cerebellum with a topo-anatomical relation to the GMT are recruited within certified stroke units of the Interdisciplinary Neurovascular Network of the Rhine-Main. Matching lesions are identified using a predefined MRI template. Eligible patients are prospectively followed up and present at 4 and 8 months after the index event. During study visits, a clinical neurological examination and brain MRI, including high-resolution T2-, proton-density-weighted imaging, and DTI tractography, are performed. Fiberoptic endoscopic evaluation of swallowing is optional if palatal tremor is encountered. Study Outcomes: The primary endpoint of this prospective clinical multicenter study is to determine the frequency of radiological HOD development in patients with a posterior fossa stroke affecting the GMT at 8 months after the index event. Secondary endpoints are identification of (1) the timeline and relevance of clinical symptoms, (2) lesion localizations more prone to HOD occurrence, and (3) the best MR-imaging regimen for HOD identification. Additionally, (4) DTI tractography data are used to analyze individual pathway lesions. The aim is to contribute to the epidemiological and pathophysiological understanding of HOD and hereby facilitate future research on therapeutic and prophylactic measures. Clinical Trial Registration: HOD-IS is a registered trial at https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00020549.


Anticoagulation with warfarin and rivaroxaban ameliorates experimental autoimmune encephalomyelitis.

  • Leonie Stolz‎ et al.
  • Journal of neuroinflammation‎
  • 2017‎

In multiple sclerosis, coagulation factors have been shown to modulate inflammation. In this translational study, we investigated whether long-term anticoagulation with warfarin or rivaroxaban has beneficial effects on the course of autoimmune experimental encephalomyelitis (EAE).


Distribution of Cortical Diffusion Tensor Imaging Changes in Multiple Sclerosis.

  • Benjamin Stock‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Diffuse cortical damage in relapsing-remitting multiple sclerosis (RRMS) is clinically relevant but cannot be directly assessed with conventional MRI. In this study, it was aimed to use diffusion tensor imaging (DTI) techniques with optimized intrinsic eddy current compensation to quantify and characterize cortical mean diffusivity (MD) and fractional anisotropy (FA) changes in RRMS and to analyze the distribution of these changes across the cortex.


Measurement of Platelet Function in an Experimental Stroke Model With Aspirin and Clopidogrel Treatment.

  • Franziska Lieschke‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Dual antiplatelet treatment (DAPT) increases the risk of tPA-associated hemorrhagic transformation (HT) in ischemic stroke. To investigate the effects of DAPT in rodents, reliable indicators of platelet function utilizing a minimally invasive procedure are required. We here established a fluorescence-based assay to monitor DAPT efficiency in a mouse model of ischemic stroke with HT. Male C57/BL6 mice were fed with aspirin and clopidogrel (ASA+CPG). Venous blood was collected, stimulated with thrombin, labeled with anti-CD41-FITC and anti-CD62P-PE, and analyzed by flow cytometry. Subsequently, animals were subjected to experimental stroke and tail bleeding tests. HT was quantified using NIH ImageJ software. In ASA+CPG mice, the platelet activation marker CD62P was reduced by 40.6 ± 4.2% (p < 0.0001) compared to controls. In vitro platelet function correlated inversely with tail bleeding tests (r = -0.8, p = 0.0033, n = 12). Twenty-four hours after drug withdrawal, platelet activation rates in ASA+CPG mice were still reduced by 20.2 ± 4.1% (p = 0.0026) compared to controls, while tail bleeding volumes were increased by 4.0 ± 1.4 μl (p = 0.004). Conventional tests using light transmission aggregometry require large amounts of blood and thus cannot be used in experimental stroke studies. In contrast, flow cytometry is a highly sensitive method that utilizes small volumes and can easily be incorporated into the experimental stroke workflow. Our test can be used to monitor the inhibitory effects of DAPT in mice. Reduced platelet activation is indicative of an increased risk for tPA-associated cerebral hemorrhage following experimental stroke. The test can be applied to individual animals and implemented flexibly prior and subsequent to experimental stroke.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: