Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta.

  • Claire E L Smith‎ et al.
  • Human molecular genetics‎
  • 2016‎

Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function.


Spectrum of PEX1 and PEX6 variants in Heimler syndrome.

  • Claire E L Smith‎ et al.
  • European journal of human genetics : EJHG‎
  • 2016‎

Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6, both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G>A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families. Haplotype analysis suggests a common founder variant. All families segregated at least one missense variant, consistent with the hypothesis that HS results from genotypes including milder hypomorphic alleles. The clinical overlap of HS with the more common Usher syndrome and lack of peroxisomal abnormalities on plasma screening suggest that HS may be under-diagnosed. Recognition of AI is key to the accurate diagnosis of HS.


The ciliary Frizzled-like receptor Tmem67 regulates canonical Wnt/β-catenin signalling in the developing cerebellum via Hoxb5.

  • Zakia A Abdelhamed‎ et al.
  • Scientific reports‎
  • 2019‎

Primary cilia defects result in a group of related pleiotropic malformation syndromes known as ciliopathies, often characterised by cerebellar developmental and foliation defects. Here, we describe the cerebellar anatomical and signalling defects in the Tmem67tm1(Dgen)/H knockout mouse. At mid-gestation, Tmem67 mutant cerebella were hypoplastic and had aberrantly high canonical Wnt/β-catenin signalling, proliferation and apoptosis. Later in development, mutant cerebellar hemispheres had severe foliation defects and inferior lobe malformation, characterized by immature Purkinje cells (PCs). Early postnatal Tmem67 mutant cerebellum had disrupted ciliogenesis and reduced responsiveness to Shh signalling. Transcriptome profiling of Tmem67 mutant cerebella identified ectopic increased expression of homeobox-type transcription factors (Hoxa5, Hoxa4, Hoxb5 and Hoxd3), normally required for early rostral hindbrain patterning. HOXB5 protein levels were increased in the inferior lobe, and increased canonical Wnt signalling, following loss of TMEM67, was dependent on HOXB5. HOXB5 occupancy at the β-catenin promoter was significantly increased by activation of canonical Wnt signalling in Tmem67-/- mutant cerebellar neurones, suggesting that increased canonical Wnt signalling following mutation or loss of TMEM67 was directly dependent on HOXB5. Our results link dysregulated expression of Hox group genes with ciliary Wnt signalling defects in the developing cerebellum, providing new mechanistic insights into ciliopathy cerebellar hypoplasia phenotypes.


Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome.

  • Laura L E Whitehouse‎ et al.
  • Oral diseases‎
  • 2019‎

Variants in DLX3 cause tricho-dento-osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3.


Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism.

  • James A Poulter‎ et al.
  • American journal of human genetics‎
  • 2013‎

Foveal hypoplasia and optic nerve misrouting are developmental defects of the visual pathway and only co-occur in connection with albinism; to date, they have only been associated with defects in the melanin-biosynthesis pathway. Here, we report that these defects can occur independently of albinism in people with recessive mutations in the putative glutamine transporter gene SLC38A8. Nine different mutations were identified in seven Asian and European families. Using morpholino-mediated ablation of Slc38a8 in medaka fish, we confirmed that pigmentation is unaffected by loss of SLC38A8. Furthermore, by undertaking an association study with SNPs at the SLC38A8 locus, we showed that common variants within this gene modestly affect foveal thickness in the general population. This study reveals a melanin-independent component underpinning the development of the visual pathway that requires a functional role for SLC38A8.


Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta.

  • David A Parry‎ et al.
  • American journal of human genetics‎
  • 2013‎

A combination of autozygosity mapping and exome sequencing identified a null mutation in SLC24A4 in a family with hypomineralized amelogenesis imperfect a (AI), a condition in which tooth enamel formation fails. SLC24A4 encodes a calcium transporter upregulated in ameloblasts during the maturation stage of amelogenesis. Screening of further AI families identified a missense mutation in the ion-binding site of SLC24A4 expected to severely diminish or abolish the ion transport function of the protein. Furthermore, examination of previously generated Slc24a4 null mice identified a severe defect in tooth enamel that reflects impaired amelogenesis. These findings support a key role for SLC24A4 in calcium transport during enamel formation.


Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma.

  • Manir Ali‎ et al.
  • Molecular vision‎
  • 2010‎

To investigate the genetic basis of recessively-inherited congenital, non syndromic, bilateral, total sclerocornea in two consanguineous pedigrees, one from the Punjab province of Pakistan and the other from the Tlaxcala province of Mexico.


Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy.

  • James A Poulter‎ et al.
  • American journal of human genetics‎
  • 2010‎

Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder of the retinal vascular system. Although mutations in three genes (LRP5, FZD4, and NDP) are known to cause FEVR, these account for only a fraction of FEVR cases. The proteins encoded by these FEVR genes form part of a signaling complex that activates the Norrin-beta-catenin signaling pathway. Recently, through a large-scale reverse genetic screen in mice, Junge and colleagues identified an additional member of this signaling complex, Tspan12. Here, we report that mutations in TSPAN12 also cause autosomal-dominant FEVR. We describe seven mutations identified in a cohort of 70 FEVR patients in whom we had already excluded the known FEVR genes. This study provides further evidence for the importance of the Norrin-beta-catenin signaling pathway in the development of the retinal vasculature and also indicates that more FEVR genes remain to be identified.


Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta.

  • Claire El Smith‎ et al.
  • European journal of human genetics : EJHG‎
  • 2017‎

We identified two homozygous missense variants (c.428C>T, p.(T143M) and c.746C>T, p.(P249L)) in ACPT, the gene encoding acid phosphatase, testicular, which segregates with hypoplastic amelogenesis imperfecta in two unrelated families. ACPT is reported to play a role in odontoblast differentiation and mineralisation by supplying phosphate during dentine formation. Analysis by computerised tomography and scanning electron microscopy of a primary molar tooth from an individual homozygous for the c.746C>T variant revealed an enamel layer that was hypoplastic, but mineralised with prismatic architecture. These findings implicate variants in ACPT as a cause of early failure of amelogenesis during the secretory phase.


Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa.

  • Adriana Buskin‎ et al.
  • Nature communications‎
  • 2018‎

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.


Bi-allelic mutation of CTNNB1 causes a severe form of syndromic microphthalmia, persistent foetal vasculature and vitreoretinal dysplasia.

  • Rachel L Taylor‎ et al.
  • Orphanet journal of rare diseases‎
  • 2022‎

Inherited vitreoretinopathies arise as a consequence of congenital retinal vascularisation abnormalities. They represent a phenotypically and genetically heterogeneous group of disorders that can have a major impact on vision. Several genes encoding proteins and effectors of the canonical Wnt/β-catenin pathway have been associated and precise diagnosis, although difficult, is essential for proper clinical management including syndrome specific management where appropriate. This work aimed to investigate the molecular basis of disease in a single proband born to consanguineous parents, who presented with microphthalmia, persistent foetal vasculature, posterior lens vacuoles, vitreoretinal dysplasia, microcephaly, hypotelorism and global developmental delay, and was registered severely visually impaired by 5 months of age.


Long-Read Nanopore Sequencing of RPGR ORF15 is Enhanced Following DNase I Treatment of MinION Flow Cells.

  • Samar Yahya‎ et al.
  • Molecular diagnosis & therapy‎
  • 2023‎

RPGR ORF15 is an exon present almost exclusively in the retinal transcript of RPGR. It is purine-rich, repetitive and notoriously hard to sequence, but is a hotspot for mutations causing X-linked retinitis pigmentosa.


Biallelic sequence and structural variants in RAX2 are a novel cause for autosomal recessive inherited retinal disease.

  • Stijn Van de Sompele‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2019‎

RAX2 encodes a homeobox-containing transcription factor, in which four monoallelic pathogenic variants have been described in autosomal dominant cone-dominated retinal disease.


A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency.

  • David A Parry‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2016‎

No abstract available


A distinctive oral phenotype points to FAM20A mutations not identified by Sanger sequencing.

  • James A Poulter‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2015‎

Biallelic FAM20A mutations cause two conditions where Amelogenesis Imperfecta (AI) is the presenting feature: Amelogenesis Imperfecta and Gingival Fibromatosis Syndrome; and Enamel Renal Syndrome. A distinctive oral phenotype is shared in both conditions. On Sanger sequencing of FAM20A in cases with that phenotype, we identified two probands with single, likely pathogenic heterozygous mutations. Given the recessive inheritance pattern seen in all previous FAM20A mutation-positive families and the potential for renal disease, further screening was carried out to look for a second pathogenic allele. Reverse transcriptase-PCR on cDNA was used to determine transcript levels. CNVseq was used to screen for genomic insertions and deletions. In one family, FAM20A cDNA screening revealed only a single mutated FAM20A allele with the wild-type allele not transcribed. In the second family, CNV detection by whole genome sequencing (CNVseq) revealed a heterozygous 54.7 kb duplication encompassing exons 1 to 4 of FAM20A. This study confirms the link between biallelic FAM20A mutations and the characteristic oral phenotype. It highlights for the first time examples of FAM20A mutations missed by the most commonly used mutation screening techniques. This information informed renal assessment and ongoing clinical care.


Mutation screening of retinal dystrophy patients by targeted capture from tagged pooled DNAs and next generation sequencing.

  • Christopher M Watson‎ et al.
  • PloS one‎
  • 2014‎

Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies.


Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin.

  • Zeinab Ravesh‎ et al.
  • Molecular vision‎
  • 2015‎

To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members.


Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress.

  • Steven J Brookes‎ et al.
  • Human molecular genetics‎
  • 2017‎

'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype.


The effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress.

  • Kristel Klaus‎ et al.
  • Brain and behavior‎
  • 2017‎

Previous research has indicated that variation in genes encoding catechol-O-methyltransferase (COMT) and dopamine receptor D2 (DRD2) may influence cognitive function and that this may confer vulnerability to the development of mental health disorders such as schizophrenia. However, increasing evidence suggests environmental factors such as early life stress may interact with genetic variants in affecting these cognitive outcomes. This study investigated the effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress in healthy adults.


A missense mutation in the nuclear localization signal sequence of CERKL (p.R106S) causes autosomal recessive retinal degeneration.

  • Manir Ali‎ et al.
  • Molecular vision‎
  • 2008‎

To investigate the genetic basis of autosomal recessive retinal degeneration in a large consanguineous family from Pakistan.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: