Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Homeodomain transcription factor Meis1 is a critical regulator of adult bone marrow hematopoiesis.

  • Reina Ariki‎ et al.
  • PloS one‎
  • 2014‎

Hematopoietic stem cells in the bone marrow have the capacity to both self-renew and to generate all cells of the hematopoietic system. The balance of these two activities is controlled by hematopoietic stem cell-intrinsic regulatory mechanisms as well as extrinsic signals from the microenvironment. Here we demonstrate that Meis1, a TALE family homeodomain transcription factor involved in numerous embryonic developmental processes, is selectively expressed in hematopoietic stem/progenitor cells. Conditional Meis1 knockout in adult hematopoietic cells resulted in a significant reduction in the hematopoietic stem/progenitor cells. Suppression of hematopoiesis by Meis1 deletion appears to be caused by impaired self-renewal activity and reduced cellular quiescence of hematopoietic stem/progenitor cells in a cell autonomous manner, resulting in stem cell exhaustion and defective long-term hematopoiesis. Meis1 deficiency down-regulated a subset of Pbx1-dependent hematopoietic stem cell signature genes, suggesting a functional link between them in the maintenance of hematopoietic stem/progenitor cells. These results show the importance of Meis1 in adult hematopoiesis.


Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

  • Yoshihiro Sowa‎ et al.
  • PloS one‎
  • 2013‎

Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs). This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2) and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta). NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.


Purified mesenchymal stem cells are an efficient source for iPS cell induction.

  • Kunimichi Niibe‎ et al.
  • PloS one‎
  • 2011‎

Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear.


Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers.

  • Yo Mabuchi‎ et al.
  • Stem cells international‎
  • 2013‎

Mesenchymal stem cells (MSCs) are currently defined as multipotent stromal cells that undergo sustained in vitro growth and can give rise to cells of multiple mesenchymal lineages, such as adipocytes, chondrocytes, and osteoblasts. The regenerative and immunosuppressive properties of MSCs have led to numerous clinical trials exploring their utility for the treatment of a variety of diseases (e.g., acute graft-versus-host disease, Crohn's disease, multiple sclerosis, osteoarthritis, and cardiovascular diseases including heart failure and myocardial infarction). On the other hand, conventionally cultured MSCs reflect heterogeneous populations that often contain contaminating cells due to the significant variability in isolation methods and the lack of specific MSC markers. This review article focuses on recent developments in the MSC research field, with a special emphasis on the identification of novel surface markers for the in vivo localization and prospective isolation of murine and human MSCs. Furthermore, we discuss the physiological importance of MSC subtypes in vivo with specific reference to data supporting their contribution to HSC niche homeostasis. The isolation of MSCs using selective markers (combination of PDGFR α and Sca-1) is crucial to address the many unanswered questions pertaining to these cells and has the potential to enhance their therapeutic potential enormously.


A Shaking-Culture Method for Generating Bone Marrow Derived Mesenchymal Stromal/Stem Cell-Spheroids With Enhanced Multipotency in vitro.

  • Kunimichi Niibe‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Mesenchymal stromal/stem cells (MSCs), which generally expand into adherent monolayers, readily lose their proliferative and multilineage potential following repeated passages. Floating culture systems can be used to generate MSC spheroids, which are expected to overcome limitations associated with conventional adherent cultures while facilitating scaffold-free cell transplantation. However, the phenotypic characteristics of spheroids after long-term culture are unknown. In addition, regenerative therapies require new culture systems to maintain their undifferentiated state. In this study, we established a novel culture method employing three-dimensional (3D) "shaking" to generate MSC spheroids using bone marrow derived MSCs. Floating 3D cultures of mouse or human MSCs formed spheroids after shaking (85-95 rpm), within 1 month. These spheroids maintained their osteogenic-, adipogenic-, and chondrogenic-differentiation capacity. The adipogenic-differentiation capacity of adherent cultured mouse and human MSCs, which is lost following several passages, was remarkedly restored by shaking-culture. Notably, human MSC spheroids exhibited a renewable "undifferentiated MSC-pool" property, wherein undifferentiated MSCs grew from spheroids seeded repeatedly on a plastic culture dish. These data suggest that the shaking-culture method maintains and restores multipotency that is lost following monolayer expansion and thereby shows potential as a promising strategy for regenerative therapies with mesenchymal tissues.


Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs.

  • Jiahao Yang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Mitochondria are essential organelles for maintaining intracellular homeostasis. Their dysfunction can directly or indirectly affect cell functioning and is linked to multiple diseases. Donation of exogenous mitochondria is potentially a viable therapeutic strategy. For this, selecting appropriate donors of exogenous mitochondria is critical. We previously demonstrated that ultra-purified bone marrow-derived mesenchymal stem cells (RECs) have better stem cell properties and homogeneity than conventionally cultured bone marrow-derived mesenchymal stem cells. Here, we explored the effect of contact and noncontact systems on three possible mitochondrial transfer mechanisms involving tunneling nanotubes, connexin 43 (Cx43)-mediated gap junction channels (GJCs), and extracellular vesicles (Evs). We show that Evs and Cx43-GJCs provide the main mechanism for mitochondrial transfer from RECs. Through these two critical mitochondrial transfer pathways, RECs could transfer a greater number of mitochondria into mitochondria-deficient (ρ0) cells and could significantly restore mitochondrial functional parameters. Furthermore, we analyzed the effect of exosomes (EXO) on the rate of mitochondrial transfer from RECs and recovery of mitochondrial function. REC-derived EXO appeared to promote mitochondrial transfer and slightly improve the recovery of mtDNA content and oxidative phosphorylation in ρ0 cells. Thus, ultrapure, homogenous, and safe stem cell RECs could provide a potential therapeutic tool for diseases associated with mitochondrial dysfunction.


GADD45β Determines Chemoresistance and Invasive Growth of Side Population Cells of Human Embryonic Carcinoma.

  • Toshihiko Inowa‎ et al.
  • Stem cells international‎
  • 2010‎

Side population (SP) cells are an enriched population of stem, and the existence of SP cells has been reported in human cancer cell lines. In this study, we performed an SP analysis using 11 human cancer cell lines and confirmed the presence of SP cells in an embryonic carcinoma cell line, NEC8. NEC8 SP cells showed characteristics of cancer stem cells, such as high growth rate, chemoresistance and high invasiveness. To further characterize the NEC8 SP cells, we used DNA microarrays. Among 38,500 genes, we identified 12 genes that were over-expressed in SP cells and 1 gene that was over-expressed in non-SP cells. Among these 13 genes, we focused on GADD45b. GADD45b was over-expressed in non-SP cells, but the inhibition of GADD45b had no effect on non-SP cells. Paradoxically, the inhibition of GADD45b significantly reduced the viability of NEC8 SP cells. The inhibition of ABCG2, which determines the SP phenotype, had no effect on the invasiveness of NEC8 SP cells, but the inhibition of GADD45b significantly reduced invasiveness. These results suggest that GADD45b, but not ABCG2, might determine the cancer stem cell-like phenotype, such as chemoresistance and the high invasiveness of NEC8 SP cells, and might be a good therapeutic target.


Generation of human melanocytes from induced pluripotent stem cells.

  • Shigeki Ohta‎ et al.
  • PloS one‎
  • 2011‎

Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC). These iPS cell lines were subsequently used to form embryoid bodies (EBs) and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.


Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells.

  • Satoshi Kawase‎ et al.
  • Molecular brain‎
  • 2011‎

The specific genetic regulation of neural primordial cell determination is of great interest in stem cell biology. The Musashi1 (Msi1) protein, which belongs to an evolutionarily conserved family of RNA-binding proteins, is a marker for neural stem/progenitor cells (NS/PCs) in the embryonic and post-natal central nervous system (CNS). Msi1 regulates the translation of its downstream targets, including m-Numb and p21 mRNAs. In vitro experiments using knockout mice have shown that Msi1 and its isoform Musashi2 (Msi2) keep NS/PCs in an undifferentiated and proliferative state. Msi1 is expressed not only in NS/PCs, but also in other somatic stem cells and in tumours. Based on previous findings, Msi1 is likely to be a key regulator for maintaining the characteristics of self-renewing stem cells. However, the mechanisms regulating Msi1 expression are not yet clear.


Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart.

  • Yuichi Tomita‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Arodent cardiac side population cell fraction formed clonal spheroids in serum-free medium, which expressed nestin, Musashi-1, and multi-drug resistance transporter gene 1, markers of undifferentiated neural precursor cells. These markers were lost following differentiation, and were replaced by the expression of neuron-, glial-, smooth muscle cell-, or cardiomyocyte-specific proteins. Cardiosphere-derived cells transplanted into chick embryos migrated to the truncus arteriosus and cardiac outflow tract and contributed to dorsal root ganglia, spinal nerves, and aortic smooth muscle cells. Lineage studies using double transgenic mice encoding protein 0-Cre/Floxed-EGFP revealed undifferentiated and differentiated neural crest-derived cells in the fetal myocardium. Undifferentiated cells expressed GATA-binding protein 4 and nestin, but not actinin, whereas the differentiated cells were identified as cardiomyocytes. These results suggest that cardiac neural crest-derived cells migrate into the heart, remain there as dormant multipotent stem cells-and under the right conditions-differentiate into cardiomyocytes and typical neural crest-derived cells, including neurons, glia, and smooth muscle.


Musculin/MyoR is expressed in kidney side population cells and can regulate their function.

  • Keiichi Hishikawa‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Musculin/MyoR is a new member of basic helix-loop-helix transcription factors, and its expression is limited to skeletal muscle precursors. Here, we report that musculin/MyoR is expressed in adult kidney side population (SP) cells and can regulate their function. SP phenotype can be used to purify stem cell-rich fractions. Microarray analysis clarified that musculin/MyoR was exclusively expressed in kidney SP cells, and the cells resided in the renal interstitial space. Musculin/MyoR-positive cells were decreased in acute renal failure, but infusion of kidney SP cells increased musculin/MyoR-positive cells and improved renal function. Kidney SP cells in reversible acute renal failure expressed a high level of renoprotective factors and leukemia inhibitory factor (LIF), but not in irreversible chronic renal failure. In cultured kidney SP cells, LIF stimulated gene expression of renoprotective factors, and down-regulation of musculin/MyoR augmented LIF-induced gene expression. Our results suggest that musculin/MyoR may play important roles not only in developmental processes but also in regenerative processes in adult tissue.


Transcription factor Tlx1 marks a subset of lymphoid tissue organizer-like mesenchymal progenitor cells in the neonatal spleen.

  • Yuta Ueno‎ et al.
  • Scientific reports‎
  • 2019‎

The spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin β receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.


Chitinase-like protein 3: A novel niche factor for mouse neural stem cells.

  • Jun Namiki‎ et al.
  • Stem cell reports‎
  • 2022‎

The concept of a perivascular niche has been proposed for neural stem cells (NSCs). This study examined endothelial colony-forming cell (ECFC)-secreted proteins as potential niche factors for NSCs. Intraventricle infusion with ECFC-secreted proteins increased the number of NSCs. ECFC-secreted proteins were more effective in promoting NSC self-renewal than marrow stromal cell (MSC)-secreted proteins. Differential proteomics analysis of MSC-secreted and ECFC-secreted proteins was performed, which revealed chitinase-like protein 3 (CHIL3; also called ECF-L or Ym1) as a candidate niche factor for NSCs. Experiments with recombinant CHIL3, small interfering RNA, and neutralizing antibodies demonstrated that CHIL3 stimulated NSC self-renewal with neurogenic propensity. CHIL3 was endogenously expressed in the neurogenic niche of the brain and retina as well as in the injured brain and retina. Transcriptome and phosphoproteome analyses revealed that CHIL3 activated various genes and proteins associated with NSC maintenance or neurogenesis. Thus, CHIL3 is a novel niche factor for NSCs.


Human hepatocyte-derived extracellular vesicles attenuate the carbon tetrachloride-induced acute liver injury in mice.

  • Masatoshi Kakizaki‎ et al.
  • Cell death & disease‎
  • 2021‎

Acute liver injury (ALI) induced by chemicals or viruses can progress rapidly to acute liver failure (ALF), often resulting in death of patients without liver transplantation. Since liver transplantation is limited due to a paucity of donors, expensive surgical costs, and severe immune rejection, novel therapies are required to treat liver injury. Extracellular vesicles (EVs) are used for cellular communication, carrying RNAs, proteins, and lipids and delivering them intercellularly after being endocytosed by target cells. Recently, it was reported that EVs secreted from human hepatocytes have an ability to modulate the immune responses; however, these roles of EVs secreted from human hepatocytes were studied only with in vitro experiments. In the present study, we evidenced that EVs secreted from human hepatocytes attenuated the CCL4-induced ALI by inhibiting the recruitment of monocytes through downregulation of chemokine receptor in the bone marrow and recruitment of neutrophils through the reduction of C-X-C motif chemokine ligand 1 (CXCL1) and CXCL2 expression levels in the liver.


Highly-purified rapidly expanding clones, RECs, are superior for functional-mitochondrial transfer.

  • Jiahao Yang‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

Mitochondrial dysfunction caused by mutations in mitochondrial DNA (mtDNA) or nuclear DNA, which codes for mitochondrial components, are known to be associated with various genetic and congenital disorders. These mitochondrial disorders not only impair energy production but also affect mitochondrial functions and have no effective treatment. Mesenchymal stem cells (MSCs) are known to migrate to damaged sites and carry out mitochondrial transfer. MSCs grown using conventional culture methods exhibit heterogeneous cellular characteristics. In contrast, highly purified MSCs, namely the rapidly expanding clones (RECs) isolated by single-cell sorting, display uniform MSCs functionality. Therefore, we examined the differences between RECs and MSCs to assess the efficacy of mitochondrial transfer.


Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery.

  • Yunpeng Bai‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2018‎

This study evaluated the feasibility of a novel three-dimensional (3D) porous composite of uncalcined and unsintered hydroxyapatite (u-HA) and poly-d/l-lactide (PDLLA) (3D-HA/PDLLA) for the bony regenerative biomaterial in maxillofacial surgery, focusing on cellular activities and osteoconductivity properties in vitro and in vivo. In the in vitro study, we assessed the proliferation and ingrowth of preosteoblastic cells (MC3T3-E1 cells) in 3D-HA/PDLLA biomaterials using 3D cell culture, and the results indicated enhanced bioactive proliferation. After osteogenic differentiation of those cells on 3D-HA/PDLLA, the osteogenesis marker genes runt-related transcription factor-2 (Runx2), and Sp7 (Osterix) were upregulated. For the in vivo study, we evaluated the utility of 3D-HA/PDLLA biomaterials compared to the conventional bone substitute of beta-tricalcium phosphate (β-TCP) in rats with critical mandibular bony defects. The implantation of 3D-HA/PDLLA biomaterials resulted in enhanced bone regeneration, by inducing high osteoconductivity as well as higher β-TCP levels. Our study thus showed that the novel composite, 3D-HA/PDLLA, is an excellent bioactive/bioresorbable biomaterial for use as a cellular scaffold, both in vitro and in vivo, and has utility in bone regenerative therapy, such as for patients with irregular maxillofacial bone defects.


Application of a Bioactive/Bioresorbable Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/Poly-D/L-lactide Composite with Human Mesenchymal Stem Cells for Bone Regeneration in Maxillofacial Surgery: A Pilot Animal Study.

  • Jingjing Sha‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2019‎

A novel three-dimensional (3D) porous uncalcined and unsintered hydroxyapatite/poly-d/l-lactide (3D-HA/PDLLA) composite demonstrated superior biocompatibility, osteoconductivity, biodegradability, and plasticity, thereby enabling complex maxillofacial defect reconstruction. Mesenchymal stem cells (MSCs)-a type of adult stem cell-have a multipotent ability to differentiate into chondrocytes, adipocytes, and osteocytes. In a previous study, we found that CD90 (Thy-1, cluster of differentiation 90) and CD271 (low-affinity nerve growth factor receptor) double-positive cell populations from human bone marrow had high proliferative ability and differentiation capacity in vitro. In the present study, we investigated the utility of bone regeneration therapy using implantation of 3D-HA/PDLLA loaded with human MSCs (hMSCs) in mandibular critical defect rats. Microcomputed tomography (Micro-CT) indicated that implantation of a 3D-HA/PDLLA-hMSC composite scaffold improved the ability to achieve bone regeneration compared with 3D-HA/PDLLA alone. Compared to the sufficient blood supply in the mandibular defection superior side, a lack of blood supply in the inferior side caused delayed healing. The use of Villanueva Goldner staining (VG staining) revealed the gradual progression of the nucleated cells and new bone from the scaffold border into the central pores, indicating that 3D-HA/PDLLA loaded with hMSCs had good osteoconductivity and an adequate blood supply. These results further demonstrated that the 3D-HA/PDLLA-hMSC composite scaffold was an effective bone regenerative method for maxillofacial boney defect reconstruction.


Local injection of CCL19-expressing mesenchymal stem cells augments the therapeutic efficacy of anti-PD-L1 antibody by promoting infiltration of immune cells.

  • Yuichi Iida‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Mesenchymal stem/stromal cells (MSC) accumulate and reside in tumor sites.


Injection of Ultra-Purified Stem Cells with Sodium Alginate Reduces Discogenic Pain in a Rat Model.

  • Hisataka Suzuki‎ et al.
  • Cells‎
  • 2023‎

Intervertebral disc (IVD) degeneration is a major cause of low back pain. However, treatments directly approaching the etiology of IVD degeneration and discogenic pain are not yet established. We previously demonstrated that intradiscal implantation of cell-free bioresorbable ultra-purified alginate (UPAL) gel promotes tissue repair and reduces discogenic pain, and a combination of ultra-purified, Good Manufacturing Practice (GMP)-compliant, human bone marrow mesenchymal stem cells (rapidly expanding clones; RECs), and the UPAL gel increasingly enhanced IVD regeneration in animal models. This study investigated the therapeutic efficacy of injecting a mixture of REC and UPAL non-gelling solution for discogenic pain and IVD regeneration in a rat caudal nucleus pulposus punch model. REC and UPAL mixture and UPAL alone suppressed not only the expression of TNF-α, IL-6, and TrkA (p < 0.01, respectively), but also IVD degeneration and nociceptive behavior compared to punching alone (p < 0.01, respectively). Furthermore, REC and UPAL mixture suppressed these expression levels and nociceptive behavior compared to UPAL alone (p < 0.01, respectively). These results suggest that this minimally invasive treatment strategy with a single injection may be applied to treat discogenic pain and as a regenerative therapy.


Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow.

  • Kentaro Yoshioka‎ et al.
  • PloS one‎
  • 2015‎

Prep1, a TALE-family homeodomain transcription factor, has been demonstrated to play a critical role in embryonic hematopoiesis, as its insufficiency caused late embryonic lethality associated with defective hematopoiesis and angiogenesis. In the present study, we generated hematopoietic- and endothelial cell-specific Prep1-deficient mice and demonstrated that expression of Prep1 in the hematopoietic cell compartment is not essential for either embryonic or adult hematopoiesis, although its absence causes significant hematopoietic abnormalities in the adult bone marrow. Loss of Prep1 promotes cell cycling of hematopoietic stem/progenitor cells (HSPC), leading to the expansion of the HSPC pool. Prep1 deficiency also results in the accumulation of lineage-committed progenitors, increased monocyte/macrophage differentiation and arrested erythroid maturation. Maturation of T cells and B cells is also perturbed in Prep-deficient mice. These findings provide novel insight into the pleiotropic roles of Prep1 in adult hematopoiesis that were unrecognized in previous studies using germline Prep1 hypomorphic mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: