Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Negative effects of a high tumour necrosis factor-α concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents.

  • Chiara Giacomelli‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Adult mesenchymal stem cells (MSCs) play a crucial role in the maintenance of tissue homeostasis and in regenerative processes. Among the different MSC types, the gingiva-derived mesenchymal stem cells (GMSCs) have arisen as a promising tool to promote the repair of damaged tissues secreting trophic mediators that affect different types of cells involved in regenerative processes. Tumour necrosis factor (TNF)-α is one of the key mediators of inflammation that could affect tissue regenerative processes and modify the MSC properties in in-vitro applications. To date, no data have been reported on the effects of TNF-α on GMSC trophic activities and how its modulation with anti-inflammatory agents from natural sources could modulate the GMSC properties.


The A2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells.

  • Chiara Giacomelli‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.


Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis.

  • Chiara Giacomelli‎ et al.
  • Scientific reports‎
  • 2017‎

A high cell proliferation rate, invasiveness and resistance to chemotherapy are the main features of glioblastoma (GBM). GBM aggressiveness has been widely associated both with a minor population of cells presenting stem-like properties (cancer stem-like cells, CSCs) and with the ability of tumor cells to acquire a mesenchymal phenotype (epithelial-mesenchymal transition, EMT). Carnosol (CAR), a natural inhibitor of MDM2/p53 complex, has been attracted attention for its anti-cancer effects on several tumor types, including GBM. Herein, the effects of CAR on U87MG-derived CSC viability and stemness features were evaluated. CAR decreased the rate of CSC formation and promoted the CSC apoptotic cell death through p53 functional reactivation. Moreover, CAR was able to control the TNF-α/TGF-β-induced EMT, counteracting the effects of the cytokine on EMT master regulator genes (Slug, Snail, Twist and ZEB1) and modulating the activation of miR-200c, a key player in the EMT process. Finally, CAR was able to increase the temozolomide (TMZ) anti-proliferative effects. These findings demonstrate that CAR affected the different intracellular mechanism of the complex machinery that regulates GBM stemness. For the first time, the diterpene was highlighted as a promising lead for the development of agents able to decrease the stemness features, thus controlling GBM aggressiveness.


Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits.

  • Chiara Giacomelli‎ et al.
  • BMC cancer‎
  • 2021‎

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Treatment options for TNBC patients are limited and further insights into disease aetiology are needed to develop better therapeutic approaches. microRNAs' ability to regulate multiple targets could hold a promising discovery approach to pathways relevant for TNBC aggressiveness. Thus, we address the role of miRNAs in controlling three signalling pathways relevant to the biology of TNBC, and their downstream phenotypes.


Oxaliplatin(IV) Prodrugs Functionalized with Gemcitabine and Capecitabine Induce Blockage of Colorectal Cancer Cell Growth-An Investigation of the Activation Mechanism and Their Nanoformulation.

  • Carlo Marotta‎ et al.
  • Pharmaceutics‎
  • 2024‎

The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.


TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being.

  • Eleonora Da Pozzo‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.


Coordinated Pulses of mRNA and of Protein Translation or Degradation Produce EGF-Induced Protein Bursts.

  • Roni Golan-Lavi‎ et al.
  • Cell reports‎
  • 2017‎

Protein responses to extracellular cues are governed by gene transcription, mRNA degradation and translation, and protein degradation. In order to understand how these time-dependent processes cooperate to generate dynamic responses, we analyzed the response of human mammary cells to the epidermal growth factor (EGF). Integrating time-dependent transcript and protein data into a mathematical model, we inferred for several proteins their pre-and post-stimulus translation and degradation coefficients and found that they exhibit complex, time-dependent variation. Specifically, we identified strategies of protein production and degradation acting in concert to generate rapid, transient protein bursts in response to EGF. Remarkably, for some proteins, for which the response necessitates rapidly decreased abundance, cells exhibit a transient increase in the corresponding degradation coefficient. Our model and analysis allow inference of the kinetics of mRNA translation and protein degradation, without perturbing cells, and open a way to understanding the fundamental processes governing time-dependent protein abundance profiles.


Epigenetic Modifications of the α-Synuclein Gene and Relative Protein Content Are Affected by Ageing and Physical Exercise in Blood from Healthy Subjects.

  • Simona Daniele‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Epigenetic regulation may contribute to the beneficial effects of physical activity against age-related neurodegeneration. For example, epigenetic alterations of the gene encoding for α-synuclein (SNCA) have been widely explored in both brain and peripheral tissues of Parkinson's disease samples. However, no data are currently available about the effects of physical exercise on SNCA epigenetic regulation in ageing healthy subjects. The present paper explored whether, in healthy individuals, age and physical activity are related to blood intron1-SNCA (SNCAI1 ) methylation, as well as further parameters linked to such epigenetic modification (total, oligomeric α-synuclein and DNA methyltransferase concentrations in the blood). Here, the SNCAI1 methylation status increased with ageing, and consistent with this result, low α-synuclein levels were found in the blood. The direct relationship between SNCAI1 methylation and α-synuclein levels was observed in samples characterized by blood α-synuclein concentrations of 76.3 ng/mg protein or lower (confidence interval (CI) = 95%). In this selected population, higher physical activity reduced the total and oligomeric α-synuclein levels. Taken together, our data shed light on ageing- and physical exercise-induced changes on the SNCA methylation status and protein levels of α-synuclein.


TGFβ1 regulates HGF-induced cell migration and hepatocyte growth factor receptor MET expression via C-ets-1 and miR-128-3p in basal-like breast cancer.

  • Christian Breunig‎ et al.
  • Molecular oncology‎
  • 2018‎

Breast cancer is the most common cancer in women worldwide. The tumor microenvironment contributes to tumor progression by inducing cell dissemination from the primary tumor and metastasis. TGFβ signaling is involved in breast cancer progression and is specifically elevated during metastatic transformation in aggressive breast cancer. In this study, we performed genomewide correlation analysis of TGFBR2 expression in a panel of 51 breast cancer cell lines and identified that MET is coregulated with TGFBR2. This correlation was confirmed at the protein level in breast cancer cell lines and human tumor tissues. Flow cytometric analysis of luminal and basal-like breast cancer cell lines and examination of 801 tumor specimens from a prospective cohort of breast cancer patients using reverse phase protein arrays revealed that expression of TGFBR2 and MET is increased in basal-like breast cancer cell lines, as well as in triple-negative breast cancer tumor tissues, compared to other subtypes. Using real-time cell analysis technology, we demonstrated that TGFβ1 triggered hepatocyte growth factor (HGF)-induced and MET-dependent migration in vitro. Bioinformatic analysis predicted that TGFβ1 induces expression of C-ets-1 as a candidate transcription factor regulating MET expression. Indeed, TGFβ1-induced expression of ETS1 and breast cancer cell migration was blocked by knockdown of ETS1. Further, we identified that MET is a direct target of miR-128-3p and that this miRNA is negatively regulated by TGFβ1. Overexpression of miR-128-3p reduced MET expression and abrogated HGF-induced cell migration of invasive breast cancer cells. In conclusion, we have identified that TGFβ1 regulates HGF-induced and MET-mediated cell migration, through positive regulation of C-ets-1 and negative regulation of miR-128-3p expression in basal-like breast cancer cell lines and in triple-negative breast cancer tissue.


Human Microglia Extracellular Vesicles Derived from Different Microglia Cell Lines: Similarities and Differences.

  • Lorenzo Ceccarelli‎ et al.
  • ACS omega‎
  • 2022‎

Microglial cells are a component of the innate immune system in the brain that support cell-to-cell communication via secreted molecules and extracellular vesicles (EVs). EVs can be divided into two major populations: large (LEVs) and small (SEVs) EVs, carrying different mediators, such as proteins, lipids, and miRNAs. The microglia EVs cargo crucially reflects the status of parental cells and can lead to both beneficial and detrimental effects in many physiopathological states. Herein, a workflow for the extraction and characterization of SEVs and LEVs from human C20 and HMC3 microglia cell lines derived, respectively, from adult and embryonic microglia is reported. EVs were gathered from the culture media of the two cell lines by sequential ultracentrifugation steps and their biochemical and biophysical properties were analyzed by Western blot, transmission electron microscopy, and dynamic light scattering. Although the C20- and HMC3-derived EVs shared several common features, C20-derived EVs were slightly lower in number and more polydispersed. Interestingly, C20- but not HMC3-SEVs were able to interfere with the proliferation of U87 glioblastoma cells. This correlated with the different relative levels of eight miRNAs involved in neuroinflammation and tumor progression in the C20- and HMC3-derived EVs, which in turn reflected a different basal activation state of the two cell types. Our data fill a gap in the community of microglia EVs, in which the preparations from human cells have been poorly characterized so far. Furthermore, these results shed light on both the differences and similarities of EVs extracted from different human microglia cell models, underlining the need to better characterize the features and biological effects of EVs for therein useful and correct application.


Novel positive allosteric modulators of A2B adenosine receptor acting as bone mineralisation promoters.

  • Elisabetta Barresi‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2021‎

Small-molecules acting as positive allosteric modulators (PAMs) of the A2B adenosine receptor (A2B AR) could potentially represent a novel therapeutic strategy for pathological conditions characterised by altered bone homeostasis, including osteoporosis. We investigated a library of compounds (4-13) exhibiting different degrees of chemical similarity with three indole derivatives (1-3), which have been recently identified by us as PAMs of the A2B AR able to promote mesenchymal stem cell differentiation and bone formation. Evaluation of mineralisation activity of 4-13 in the presence and in the absence of the agonist BAY60-6583 allowed the identification of lead compounds with therapeutic potential as anti-osteoporosis agents. Further biological characterisation of one of the most performing compounds, the benzofurane derivative 9, confirmed that such a molecule behaves as PAM of the A2B AR.


Molecular insight on the altered membrane trafficking of TrkA kinase dead mutants.

  • Rosy Amodeo‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2020‎

We address the contribution of kinase domain structure and catalytic activity to membrane trafficking of TrkA receptor tyrosine kinase. We conduct a systematic comparison between TrkA-wt, an ATP-binding defective mutant (TrkA-K544N) and other mutants displaying separate functional impairments of phosphorylation, ubiquitination, or recruitment of intracellular partners. We find that only K544N mutation endows TrkA with restricted membrane mobility and a substantial increase of cell surface pool already in the absence of ligand stimulation. This mutation is predicted to drive a structural destabilization of the αC helix in the N-lobe by molecular dynamics simulations, and enhances interactions with elements of the actin cytoskeleton. On the other hand, a different TrkA membrane immobilization is selectively observed after NGF stimulation, requires both phosphorylation and ubiquitination to occur, and is most probably related to the signaling abilities displayed by the wt but not mutated receptors. In conclusion, our results allow to distinguish two different TrkA membrane immobilization modes and demonstrate that not all kinase-inactive mutants display identical membrane trafficking.


Identification of a Novel p53 Modulator Endowed with Antitumoural and Antibacterial Activity through a Scaffold Repurposing Approach.

  • Elisa Nuti‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Intracellular pathogens, such as Chlamydia trachomatis, have been recently shown to induce degradation of p53 during infection, thus impairing the protective response of the host cells. Therefore, p53 reactivation by disruption of the p53-MDM2 complex could reduce infection and restore pro-apoptotic effect of p53. Here, we report the identification of a novel MDM2 inhibitor with potential antitumoural and antibacterial activity able to reactivate p53. A virtual screening was performed on an in-house chemical library, previously synthesised for other targets, and led to the identification of a hit compound with a benzo[a]dihydrocarbazole structure, RM37. This compound induced p53 up-regulation in U343MG glioblastoma cells by blocking MDM2-p53 interaction and reduced tumour cell growth. NMR studies confirmed its ability to dissociate the MDM2-p53 complex. Notably, RM37 reduced Chlamydia infection in HeLa cells in a concentration-dependent manner and ameliorated the inflammatory status associated with infection.


Apolipoprotein E ε4 triggers neurotoxicity via cholesterol accumulation, acetylcholine dyshomeostasis, and PKCε mislocalization in cholinergic neuronal cells.

  • Rebecca Piccarducci‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2023‎

The Apolipoprotein E (ApoE) has been known to regulate cholesterol and β-amyloid (Aβ) production, redistribution, and elimination, in the central nervous system (CNS). The ApoE ε4 polymorphic variant leads to impaired brain cholesterol homeostasis and amyloidogenic pathway, thus representing the major risk factor for Alzheimer's Disease (AD). Currently, less is known about the molecular mechanisms connecting ApoE ε4-related cholesterol metabolism and cholinergic system degeneration, one of the main AD pathological features. Herein, in vitro cholinergic neuron models were developed in order to study ApoE neuronal expression and investigate the possible interplay between cholesterol metabolism and cholinergic pathway impairment prompted by ε4 isoform. Particularly, alterations specifically occurring in ApoE ε4-carrying neurons (i.e. increased intracellular ApoE, amyloid precursor protein (APP) and Aβ levels, elevated apoptosis, and reduced cell survival) were recapitulated. ApoE ε4 expression was found to increase intracellular cholesterol accumulation, by regulating the related gene expression, while reducing cholesterol precursor acetyl-CoA, which in turn fuels the acetylcholine (ACh) synthesis route. In parallel, although the ACh intracellular signalling was activated, as demonstrated by the boosted extracellular ACh as well as increased IP3 and Ca2+, the PKCε activation via membrane translocation was surprisingly suppressed, probably explained by the cholesterol overload in ApoE ε4 neuron-like cells. Consequently, the PKC-dependent anti-apoptotic and neuroprotective roles results impaired, reliably adding to other causes of cell death prompted by ApoE ε4. Overall, the obtained data open the way to further critical considerations of ApoE ε4-dependent cholesterol metabolism dysregulation in the alteration of cholinergic pathway, neurotoxicity, and neuronal death.


TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy.

  • Barbara Costa‎ et al.
  • Scientific reports‎
  • 2016‎

The pharmacological activation of the cholesterol-binding Translocator Protein (TSPO) leads to an increase of endogenous steroids and neurosteroids determining benefic pleiotropic effects in several pathological conditions, including anxiety disorders. The relatively poor relationship between TSPO ligand binding affinities and steroidogenic efficacies prompted us to investigate the time (Residence Time, RT) that a number of compounds with phenylindolylglyoxylamide structure (PIGAs) spends in contact with the target. Here, given the poor availability of TSPO ligand kinetic parameters, a kinetic radioligand binding assay was set up and validated for RT determination using a theoretical mathematical model successfully applied to other ligand-target systems. TSPO ligand RT was quantified and the obtained results showed a positive correlation between the period for which a drug interacts with TSPO and the compound ability to stimulate steroidogenesis. Specifically, the TSPO ligand RT significantly fitted both with steroidogenic efficacy (Emax) and with area under the dose-response curve, a parameter combining drug potency and efficacy. A positive relation between RT and anxiolytic activity of three compounds was evidenced. In conclusion, RT could be a relevant parameter to predict the steroidogenic efficacy and the in vivo anxiolytic action of new TSPO ligands.


Cytokine secretion responsiveness of lymphomonocytes following cortisol cell exposure: Sex differences.

  • Eleonora Da Pozzo‎ et al.
  • PloS one‎
  • 2018‎

The stress hormone cortisol has been recognized as a coordinator of immune response. However, its different ability to modulate the release of inflammatory mediators in males and females has not been clarified yet. Indeed, the dissection of cortisol specific actions may be difficult due to the complex hormonal and physio-pathological individual status. Herein, the release of inflammatory mediators following increasing cortisol concentrations was investigated in an in vitro model of primary human male and female lymphomonocytes. The use of a defined cellular model to assess sex differences in inflammatory cytokine secretion could be useful to exclude the effects of divergent and fluctuating sex hormone levels occurring in vivo. Herein, the cells were challenged with cortisol concentrations resembling the plasma levels achieving in physiological and stressful conditions. The production of cytokines and other molecules involved in inflammatory process was determined. In basal conditions, male cells presented higher levels of some pro-inflammatory molecules (NF-kB and IDO-1 mRNAs, IL-6 and kynurenine) than female cells. Following cortisol exposure, the levels of the pro-inflammatory cytokines, IL-6 and IL-8, were increased in male cells. Conversely, in female cells IL-6 release was unchanged and IL-8 levels were decreased. Anti-inflammatory cytokines, IL-4 and IL-10, did not change in male cells and increased in female cells. Interestingly, kynurenine levels were higher in female cells than in male cells following cortisol stimulus. These results highlighted that cortisol differently affects male and female lymphomonocytes, shifting the cytokine release in favour of a pro-inflammatory pattern in male cells and an anti-inflammatory secretion profile in female cells, opening the way to study the influences of other stressful factors involved in the neurohumoral changes occurring in the response to stress conditions.


De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein.

  • Lorenzo Germelli‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.


High Adenosine Extracellular Levels Induce Glioblastoma Aggressive Traits Modulating the Mesenchymal Stromal Cell Secretome.

  • Deborah Pietrobono‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Glioblastoma is an aggressive, fast-growing brain tumor influenced by the composition of the tumor microenvironment (TME) in which mesenchymal stromal cell (MSCs) play a pivotal role. Adenosine (ADO), a purinergic signal molecule, can reach up to high micromolar concentrations in TME. The activity of specific adenosine receptor subtypes on glioma cells has been widely explored, as have the effects of MSCs on tumor progression. However, the effects of high levels of ADO on glioma aggressive traits are still unclear as is its role in cancer cells-MSC cross-talk. Herein, we first studied the role of extracellular Adenosine (ADO) on isolated human U343MG cells as a glioblastoma cellular model, finding that at high concentrations it was able to prompt the gene expression of Snail and ZEB1, which regulate the epithelial-mesenchymal transition (EMT) process, even if a complete transition was not reached. These effects were mediated by the induction of ERK1/2 phosphorylation. Additionally, ADO affected isolated bone marrow derived MSCs (BM-MSCs) by modifying the pattern of secreted inflammatory cytokines. Then, the conditioned medium (CM) of BM-MSCs stimulated with ADO and a co-culture system were used to investigate the role of extracellular ADO in GBM-MSC cross-talk. The CM promoted the increase of glioma motility and induced a partial phenotypic change of glioblastoma cells. These effects were maintained when U343MG cells and BM-MSCs were co-cultured. In conclusion, ADO may affect glioma biology directly and through the modulation of the paracrine factors released by MSCs overall promoting a more aggressive phenotype. These results point out the importance to deeply investigate the role of extracellular soluble factors in the glioma cross-talk with other cell types of the TME to better understand its pathological mechanisms.


The Ionophoric Activity of a Pro-Apoptotic VEGF165 Fragment on HUVEC Cells.

  • Stefania Zimbone‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Copper plays an important role as a regulator in many pathologies involving the angiogenesis process. In cancerogenesis, tumor progression, and angiogenic diseases, copper homeostasis is altered. Although many details in the pathways involved are still unknown, some copper-specific ligands have been successfully used as therapeutic agents. Copper-binding peptides able to modulate angiogenesis represent a possible way to value new drugs. We previously reported that a fragment (VEGF73-101) of vascular endothelial growth factor (VEGF165), a potent angiogenic, induced an apoptotic effect on human umbilical vein endothelial cells. The aim of this study was to investigate the putative copper ionophoric activity of VEGF73-101, as well as establish a relationship between the structure of the peptide fragment and the cytotoxic activity in the presence of copper(II) ions. Here, we studied the stoichiometry and the conformation of the VEGF73-101/Cu(II) complexes and some of its mutated peptides by electrospray ionization mass spectrometry and circular dichroism spectroscopy. Furthermore, we evaluated the effect of all peptides in the absence and presence of copper ions by cell viability and cytofuorimetric assays. The obtained results suggest that VEGF73-101 could be considered an interesting candidate in the development of new molecules with ionophoric properties as agents in antiangiogenic therapeutic approaches.


Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation.

  • Eleonora Da Pozzo‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: