Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Crohn's disease.

  • Gaetana Lanzi‎ et al.
  • Stem cell research‎
  • 2019‎

Crohn's disease is a debilitating and incurable chronic inflammatory bowel disease, affecting millions of individuals worldwide, with an increasing frequency. Surgery must be applicable in half of the cases often with a disabling course, and pharmacological treatments may have adverse complications. We generated three isogenic clones of iPSCs from peripheral blood mononuclear cells (PBMCs) of a patient with Crohn's Disease under pharmacological treatment without adverse effects. Sendai virus based vector was used and the iPSCs were characterized for genetic uniqueness, genomic integrity, pluripotency, and differentiation ability. These iPSCs will be a powerful tool to develop tailored therapies.


Generation of induced pluripotent stem cells (iPSCs) from patient with Cri du Chat Syndrome.

  • Giovanna Piovani‎ et al.
  • Stem cell research‎
  • 2019‎

The Cri du Chat Syndrome (CdCS) is a genetic disease resulting from variable size deletion occurring on the short arm of chromosome 5. The main clinical features are a high-pitched monochromatic cry, microcephaly, severe psychomotor and mental retardation with characteristics of autism spectrum disorders such as hand flapping, obsessive attachments to objects, twirling objects, repetitive movements, and rocking. We reprogrammed to pluripotency peripheral blood mononuclear cells derived from a patient carrying large deletion on the short arm of chromosome 5, using a commercially available non-integrating expression system. The iPSCs expressed pluripotency markers and differentiated in the three embryonic germ layers.


Generation of three isogenic induced Pluripotent Stem Cell lines (iPSCs) from fibroblasts of a patient with Aicardi Goutières Syndrome carrying a c.2471G>A dominant mutation in IFIH1 gene.

  • Stefania Masneri‎ et al.
  • Stem cell research‎
  • 2019‎

Aicardi-Goutières syndrome (AGS) is an early-onset monogenic encephalopathy characterized by intracranial calcification, leukodystrophy and cerebrospinal fluid lymphocytosis. To date, seven genes have been related to AGS. Among these, IFIH1 encodes for MDA5, a cytosolic double-stranded RNA receptor, and is responsible for AGS type 7. We generated three isogenic iPSC clones, using a Sendai virus-based vector, starting from fibroblasts of a patient carrying a dominant mutation in IFIH1. All lines were characterized for genomic integrity, genetic uniqueness, pluripotency, and differentiation capability. Our clones might offer a good model to investigate AGS7 pathophysiological mechanism and to discover new biomarkers for this condition treatment.


Generation of three iPSC lines from fibroblasts of a patient with Aicardi Goutières Syndrome mutated in TREX1.

  • Rosalba Monica Ferraro‎ et al.
  • Stem cell research‎
  • 2019‎

Fibroblasts from a patient with Aicardi Goutières Syndrome (AGS) carrying a compound heterozygous mutation in TREX1, were reprogrammed into induced pluripotent stem cells (iPSCs) to establish isogenic clonal stem cell lines: UNIBSi006-A, UNIBSi006-B, and UNIBSi006-C. Cells were transduced using the episomal Sendai viral vectors, containing human OCT4, SOX2, c-MYC and KLF4 transcription factors. The transgene-free iPSC lines showed normal karyotype, expressed pluripotent markers and displayed in vitro differentiation potential toward cells of the three embryonic germ layers.


Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Autosomal Recessive Osteopetrosis due to mutations in TCIRG1 gene.

  • Gaetana Lanzi‎ et al.
  • Stem cell research‎
  • 2020‎

Autosomal recessive osteopetrosis (ARO) is a rare inherited disorder leading to increased bone density with impairment in bone resorption. Among the genes responsible for ARO, the TCIRG1 gene, coding for the a3 subunit of the osteoclast proton pump, is mutated in more than 50% of the cases, increasing the importance of TCIRG1-iPSCs as disease model. We generated 3 iPSC clones derived from Peripheral Blood Mononuclear Cells (PBMCs) of a patient carrying the heterozygous mutations p.Y512X and c.2236 + 1G > A. A Sendai virus-based vector was used and the iPSCs were characterized for genetic identity to parental cells, genomic integrity, pluripotency, and differentiation ability.


Establishment of three iPSC lines from fibroblasts of a patient with Aicardi Goutières syndrome mutated in RNaseH2B.

  • Rosalba Monica Ferraro‎ et al.
  • Stem cell research‎
  • 2019‎

We report the generation of three isogenic iPSC clones (UNIBSi007-A, UNIBSi007-B, and UNIBSi007-C) obtained from fibroblasts of a patient with Aicardi Goutières Syndrome (AGS) carrying a homozygous mutation in RNaseH2B. Cells were transduced using a Sendai virus based system, delivering the human OCT4, SOX2, c-MYC and KLF4 transcription factors. The resulting transgene-free iPSC lines retained the disease-causing DNA mutation, showed normal karyotype, expressed pluripotent markers and could differentiate in vitro toward cells of the three embryonic germ layers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: