Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 380 papers

Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit.

  • Taotao Li‎ et al.
  • Frontiers in plant science‎
  • 2015‎

To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit.


RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS.

  • Yasushi Ito‎ et al.
  • Science (New York, N.Y.)‎
  • 2016‎

Mutations in the optineurin (OPTN) gene have been implicated in both familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous system (CNS) and how it may contribute to ALS pathology are unclear. Here, we found that optineurin actively suppressed receptor-interacting kinase 1 (RIPK1)-dependent signaling by regulating its turnover. Loss of OPTN led to progressive dysmyelination and axonal degeneration through engagement of necroptotic machinery in the CNS, including RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL). Furthermore, RIPK1- and RIPK3-mediated axonal pathology was commonly observed in SOD1(G93A) transgenic mice and pathological samples from human ALS patients. Thus, RIPK1 and RIPK3 play a critical role in mediating progressive axonal degeneration. Furthermore, inhibiting RIPK1 kinase may provide an axonal protective strategy for the treatment of ALS and other human degenerative diseases characterized by axonal degeneration.


Gefitinib Synergizes with Irinotecan to Suppress Hepatocellular Carcinoma via Antagonizing Rad51-Mediated DNA-Repair.

  • Jinjin Shao‎ et al.
  • PloS one‎
  • 2016‎

Chemotherapy is the only choice for most of the advanced hepatocellular carcinoma (HCC) patients, while few agents were available, making it an urgent need to develop new chemotherapy strategies. A phase II clinical trial suggested that the efficacy of irinotecan in HCC was limited due to dose-dependent toxicities. Here, we found that gefitinib exhibited synergistic activity in combination with SN-38, an active metabolite of irinotecan, in HCC cell lines. And the enhanced apoptosis induced by gefitinib plus SN-38 was a result from caspase pathway activation. Mechanistically, gefitinib dramatically promoted the ubiquitin-proteasome-dependent degradation of Rad51 protein, suppressed the DNA repair, gave rise to more DNA damages, and ultimately resulted in the synergism of these two agents. In addition, the increased antitumor efficacy of gefitinib combined with irinotecan was further validated in a HepG2 xenograft mice model. Taken together, our data demonstrated for the first time that the combination of irinotecan and gefitinib showed potential benefit in HCC, which suggests that Rad51 is a promising target and provides a rationale for clinical trials investigating the efficacy of the combination of topoisomerase I inhibitors and gefitinib in HCC.


Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells.

  • Tian-Yi Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Sorafenib is a multikinase inhibitor used as a first-line treatment for advanced hepatocellular carcinoma (HCC), but it has shown modest to low response rates. The characteristic tumour hypoxia of advanced HCC maybe a major factor underlying hypoxia-mediated treatment failure. Thus, it is urgent to elucidate the mechanisms of hypoxia-mediated sorafenib resistance in HCC. In this study, we found that hypoxia induced the nuclear translocation of Yes associate-Protein (YAP) and the subsequent transactivation of target genes that promote cell survival and escape apoptosis, thereby leading to sorafenib resistance. Statins, the inhibitors of hydroxymethylglutaryl-CoA reductase, could ameliorate hypoxia-induced nuclear translocation of YAP and suppress mRNA levels of YAP target genes both in vivo and in vitro. Combined treatment of statins with sorafenib greatly rescued the loss of anti-proliferative effects of sorafenib under hypoxia and improved the inhibitory effects on HepG2 xenograft tumour growth, accompanied by enhanced apoptosis as evidenced by the increased sub-G1 population and PARP cleavage. The expression levels of YAP and its target genes were highly correlated with poor prognosis and predicted a high risk of HCC patients. These findings collectively suggest that statins utilization maybe a promising new strategy to counteract hypoxia-mediated resistance to sorafenib in HCC patients.


AIP1 acts with cofilin to control actin dynamics during epithelial morphogenesis.

  • Dandan Chu‎ et al.
  • Development (Cambridge, England)‎
  • 2012‎

During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.


Glycyrrhetinic Acid triggers a protective autophagy by activation of extracellular regulated protein kinases in hepatocellular carcinoma cells.

  • Zheng-Hai Tang‎ et al.
  • Journal of agricultural and food chemistry‎
  • 2014‎

Glycyrrhetinic acid (GA), one of the main constituents of the famous Chinese medicinal herb and food additive licorice (Glycyrrhiza uralensis Fisch), has been indicated to possess potential anticancer effects and is widely utilized in hepatocellular carcinoma (HCC) targeted drug delivery systems (TDDS) due to the highly expressed target binding sites of GA on HCC cells. This study found that GA reduced the cell viability, increased the release of lactate dehydrogenase, and enhanced the expression of Bax, cleaved caspase-3, and LC3-II in HCC cells. The GA-triggered autophagy has been further confirmed by monodansylcadaverine staining as well as transmission electron microscopy analysis. The cell viability was obviously decreased whereas the expression of cleaved caspases was significantly increased when inhibition of autophagy by choloroquine or bafilomycin A1, suggesting that GA triggered a protective autophagy. Extracellular regulated protein kinase (ERK) was activated after treatment with GA in HepG2 cells and pretreatment with U0126 or PD98059, the MEK inhibitors, reversed GA-triggered autophagy as evidenced by decreased expression of LC3-II and formation of autophagosomes, respectively. Furthermore, GA-induced cell death and apoptosis were enhanced after pretreatment with PD98059. This is the first report that GA triggers a protective autophagy in HCC cells via activation of ERK, which might attenuate the anticancer effects of GA or chemotherapeutic drugs loaded with GA-modified TDDS.


Probucol Protects Against Atherosclerosis Through Lipid-lowering and Suppressing Immune Maturation of CD11c+ Dendritic Cells in STZ-induced Diabetic LDLR-/- Mice.

  • Hong Zhu‎ et al.
  • Journal of cardiovascular pharmacology‎
  • 2015‎

Probucol, an agent characterized by lipid-lowering and antioxidant property, retards atherosclerosis effectively. To test the hypothesis that probucol might act its antiatherosclerotic role by suppressing immune maturation of dendritic cells (DCs), 7-week-old LDLR mice were rendered diabetic with streptozotocin (STZ) and then fed either a high-fat diet only or added with 0.5% (wt/wt) probucol for 4 months, and human monocyte-derived dendritic cells were preincubated with or without probucol and stimulated by oxidized low-density lipoprotein. In STZ-induced diabetic LDLR mice, probucol treatment significantly lowered plasma total cholesterol and high-density lipoprotein-cholesterol levels; regressed aortic atherosclerotic lesions; reduced splenic CD40, CD80, CD86, MHC-II expression, and plasma IL-12p70 production; and decreased the expression of CD11c DCs within atherosclerotic lesions. In vitro, oxidized low-density lipoprotein promoted human monocyte-derived dendritic cells maturation; stimulated CD40, CD86, CD1a, HLA-DR expression; increased tumor necrosis factor-α production; and decreased IL-4 production. However, these effects were obviously inhibited by probucol pretreatment. In conclusion, our study indicated that probucol effectively retarded atherosclerosis at least partly through lipid-lowering and inhibiting immune maturation of CD11c DCs in STZ-induced diabetic LDLR mice.


High levels of serum glypican-1 indicate poor prognosis in pancreatic ductal adenocarcinoma.

  • Cong-Ya Zhou‎ et al.
  • Cancer medicine‎
  • 2018‎

Carbohydrate antigen 19-9 (CA19-9) fails to demonstrate the predictive value for early detection pancreatic ductal adenocarcinoma (PDAC). Glypican-1 (GPC1+) exosomes may serve as a noninvasive diagnostic tool to detect early stages of PDAC. Therefore, it is necessary to explore the serum GPC1 levels and determine whether serum GPC1 serves as a novel biomarker for PDAC patients. Blood samples were collected from 156 patients with PDAC, 199 non-cancer controls, and 240 patients with other cancers. Serological levels of GPC1 were examined by enzyme-linked immunosorbent assay (ELISA). Finally, a 5-year follow-up was monitored to evaluate the correlation between serum GPC1 levels and overall survival in 156 patients with PDAC. The results suggested that levels of serum GPC1 and CA19-9 were higher in PDAC patients than that of controls (P < 0.05). Serum GPC1 levels in PDAC were different from those in gallbladder carcinoma (P < 0.001), colorectal carcinoma (P < 0.001), gastric carcinoma (P < 0.001), and prostate cancer (P < 0.001), but not hepatocellular carcinoma (P = 0.395) and cholangiocarcinoma (P = 0.724). Receiver operating characteristic curve (ROC) analysis showed that serum CA19-9 was significantly better than serum GPC1 in distinguishing PDAC patients from the controls (AUC, 95% CI: 0.908, 0.868-0.947 vs 0.795, 0.749-0.841, respectively). The serum GPC1 cannot be used as a serum diagnostic biomarker for PDAC patients. The level of serum GPC1 decreased 2 days after surgery (P = 0.001), which were not different from serum GPC1 levels in healthy control (P = 0.381). The overall survival rate was shorter in patients with high levels of serum GPC1 compared to those with low levels of serum GPC1 (log-rank = 5.16, P = 0.023). Taken together, the results indicate that high levels of serum GPC1 predict poor prognosis in PDAC patients. Serum GPC1 may be a prognosis factor for PDAC patients.


Enhanced functional connectivity of the default mode network (DMN) in patients with spleen deficiency syndrome: A resting-state fMRI study.

  • Yan-Zhe Ning‎ et al.
  • Medicine‎
  • 2019‎

Numerous studies had investigated the biological basis of spleen deficiency syndrome on gastrointestinal dysfunctions. However, little was known about neuropsychological mechanism of spleen deficiency syndrome. The default model network (DMN) plays an important role in cognitive processing. Our aim is to investigate the change of neuropsychological tests and DMN in patients with spleen deficiency syndrome.Sixteen patients and 12 healthy subjects underwent functional magnetic resonance imaging examination, and 15 patients with spleen deficiency syndrome and 6 healthy subjects take part in the two neuropsychological tests.Compared with healthy subjects, patients with spleen deficiency syndrome revealed significantly increased functional connectivity within DMN, and significantly higher in the scores of 2-FT (P = .002) and 3-FT (P = .014).Our findings suggest that patients with spleen deficiency syndrome are associated with abnormal functional connectivity of DMN and part of neuropsychological tests, which provide new evidence in neuroimaging to support the notion of TCM that the spleen stores Yi and domains thoughts.


Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders.

  • Carl A Nist-Lund‎ et al.
  • Nature communications‎
  • 2019‎

Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel-Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application.


Abnormal Dynamic Functional Connectivity Associated With Subcortical Networks in Parkinson's Disease: A Temporal Variability Perspective.

  • Hong Zhu‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Parkinson's disease (PD) is a neurodegenerative disease characterized by dysfunction in distributed functional brain networks. Previous studies have reported abnormal changes in static functional connectivity using resting-state functional magnetic resonance imaging (fMRI). However, the dynamic characteristics of brain networks in PD is still poorly understood. This study aimed to quantify the characteristics of dynamic functional connectivity in PD patients at nodal, intra- and inter-subnetwork levels. Resting-state fMRI data of a total of 42 PD patients and 40 normal controls (NCs) were investigated from the perspective of the temporal variability on the connectivity profiles across sliding windows. The results revealed that PD patients had greater nodal variability in precentral and postcentral area (in sensorimotor network, SMN), middle occipital gyrus (in visual network), putamen (in subcortical network) and cerebellum, compared with NCs. Furthermore, at the subnetwork level, PD patients had greater intra-network variability for the subcortical network, salience network and visual network, and distributed changes of inter-network variability across several subnetwork pairs. Specifically, the temporal variability within and between subcortical network and other cortical subnetworks involving SMN, visual, ventral and dorsal attention networks as well as cerebellum was positively associated with the severity of clinical symptoms in PD patients. Additionally, the increased inter-network variability of cerebellum-auditory pair was also correlated with clinical severity of symptoms in PD patients. These observations indicate that temporal variability can detect the distributed abnormalities of dynamic functional network of PD patients at nodal, intra- and inter-subnetwork scales, and may provide new insights into understanding PD.


Quantification of Gly m 5.0101 in Soybean and Soy Products by Liquid Chromatography-Tandem Mass Spectrometry.

  • Hongmin Jia‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Gly m 5.0101, the alpha subunit of β-conglycinin, is one of the major allergens found in soybeans that has been identified as causing an allergic reaction. Here, we developed a quantification method of Gly m 5.0101 with multiple reaction monitoring using the synthetic peptide 194NPFLFGSNR202 as the external standard. Firstly, the ground soybean was defatted and extracted with a protein extraction buffer. Then the crude extract was on-filter digested by trypsin and analyzed by liquid chromatography-tandem mass spectrometry. The selected peptide exhibited a detection limit of 0.48 ng/mL and a linear relationship in a concentration range from 1.6 to 500 ng/mL (r² > 0.99). The developed method was successfully applied to quantify the Gly m 5.0101 level in dozens of soybean varieties from different sources and soybean products derived from different processing techniques. The developed method could be used to further analyze β-conglycinin in soybean seeds combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis.


Modulation of α-adrenoceptor signalling protects photoreceptors after retinal detachment by inhibiting oxidative stress and inflammation.

  • Tong Li‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Currently available treatments do not halt progression of photoreceptor death and subsequent visual impairment related to retinal detachment (RD) which is observed in various retinal disorders. This study investigated the neuroprotective effects of two adrenoceptor ligands, the α1 -adrenoceptor antagonist doxazosin and the α2 -adrenoceptor agonist guanabenz, against photoreceptor cell death in RD.


Tanshinone IIA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK-Mff signaling pathways.

  • Sayilaxi Jieensinue‎ et al.
  • BMC cell biology‎
  • 2018‎

Mitochondrial homeostasis has been increasingly viewed as a potential target of cancer therapy, and mitochondrial fission is a novel regulator of mitochondrial function and apoptosis. The aim of our study was to determine the detailed role of mitochondrial fission in SW837 colorectal cancer cell viability, mobility and proliferation. In addition, the current study also investigated the therapeutic impact of Tanshinone IIA (Tan IIA), a type of anticancer adjuvant drug, on cancer mitochondrial homeostasis.


Comparative proteomic analysis of maternal peripheral plasma and umbilical venous plasma from normal and gestational diabetes mellitus pregnancies.

  • Yun Liao‎ et al.
  • Medicine‎
  • 2018‎

Gestational diabetes mellitus (GDM) increases many health risks in offspring. The study aims to investigate the underlying mechanism in fetal risk of GDM.We collected maternal peripheral plasma and umbilical venous plasma samples from 4 GDM and 4 control patients during their delivery at a university-based women's hospital. An isobaric tag for relative and absolute quantitation-labeled proteomics analysis was performed. The enzyme-linked immunosorbent assay was used to confirm the change of cholesteryl ester transfer protein (CETP). Bioinformatic analysis was performed with Ingenuity Pathway Analysis (IPA) software package.We identified 19 up-regulated proteins and 15 down-regulated proteins in GDM peripheral plasma, 29 up-regulated proteins and 69 down-regulated proteins in GDM umbilical venous plasma. CETP concentration was significantly lower in both GDM peripheral plasma and umbilical venous plasma. Upstream regulator analysis predicted follicle-stimulating hormone (FSH) as the activated regulator of differentially expressed proteins.The protein profiles in both GDM peripheral plasma and umbilical venous plasma between normal and GDM patients were significantly different. The results indicated that CETP and FSH might associates with health problem of GDM offspring.


TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging.

  • Daichao Xu‎ et al.
  • Cell‎
  • 2018‎

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Transgenic Tmc2 expression preserves inner ear hair cells and vestibular function in mice lacking Tmc1.

  • Yukako Asai‎ et al.
  • Scientific reports‎
  • 2018‎

Recent work has demonstrated that transmembrane channel-like 1 protein (TMC1) is an essential component of the sensory transduction complex in hair cells of the inner ear. A closely related homolog, TMC2, is expressed transiently in the neonatal mouse cochlea and can enable sensory transduction in Tmc1-null mice during the first postnatal week. Both TMC1 and TMC2 are expressed at adult stages in mouse vestibular hair cells. The extent to which TMC1 and TMC2 can substitute for each other is unknown. Several biophysical differences between TMC1 and TMC2 suggest these proteins perform similar but not identical functions. To investigate these differences, and whether TMC2 can substitute for TMC1 in mature hair cells, we generated a knock-in mouse model allowing Cre-inducible expression of Tmc2. We assayed for changes in hair cell sensory transduction and auditory and vestibular function in Tmc2 knockin mice (Tm[Tmc2]) in the presence or absence of endogenous Tmc1, Tmc2 or both. Our results show that expression of Tm[TMC2] restores sensory transduction in vestibular hair cells and transiently in cochlear hair cells in the absence of TMC1. The cellular rescue leads to recovery of balance but not auditory function. We conclude that TMC1 provides some additional necessary function, not provided by TMC2.


Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K+ current in rat cerebellar granule neurons.

  • Jin-Jing Yao‎ et al.
  • The Journal of biological chemistry‎
  • 2012‎

Neuritin is a new neurotrophic factor discovered in a screen to identify genes involved in activity-dependent synaptic plasticity. Neuritin also plays multiple roles in the process of neural development and synaptic plasticity. The receptors for binding neuritin and its downstream signaling effectors, however, remain unclear. Here, we report that neuritin specifically increases the densities of transient outward K(+) currents (I(A)) in rat cerebellar granule neurons (CGNs) in a time- and concentration-dependent manner. Neuritin-induced amplification of I(A) is mediated by increased mRNA and protein expression of Kv4.2, the main α-subunit of I(A). Exposure of CGNs to neuritin markedly induces phosphorylation of ERK (pERK), Akt (pAkt), and mammalian target of rapamycin (pmTOR). Neuritin-induced I(A) and increased expression of Kv4.2 are attenuated by ERK, Akt, or mTOR inhibitors. Unexpectedly, pharmacological blockade of insulin receptor, but not the insulin-like growth factor 1 receptor, abrogates the effect of neuritin on I(A) amplification and Kv4.2 induction. Indeed, neuritin activates downstream signaling effectors of the insulin receptor in CGNs and HeLa. Our data reveal, for the first time, an unanticipated role of the insulin receptor in previously unrecognized neuritin-mediated signaling.


ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion.

  • Xin Wu‎ et al.
  • PloS one‎
  • 2013‎

Luteolin has long been used in traditional Chinese medicine for treatment of various diseases. Recent studies have suggested that administration of luteolin yields cardioprotective effects during ischemia/reperfusion (I/R) in rats. However, the precise mechanisms of this action remain unclear. The aim of this study is to confirm that luteolin-mediated extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways are responsible for their cardioprotective effects during I/R. Wistar rats were divided into the following groups: (i) DMSO group (DMSO); (ii) I/R group (I/R); (iii) luteolin+I/R group (Lut+I/R); (iv) ERK1/2 inhibitor PD98059+I/R group (PD+I/R); (v) PD98059+luteolin+I/R group (PD+Lut+I/R); and (vi) JNK inhibitor SP600125+I/R group (SP+I/R). The following properties were measured: contractile function of isolated heart and cardiomyocytes; infarct size; the release of lactate dehydrogenase (LDH); the percentage of apoptotic cells; the expression levels of Bcl-2 and Bax; and phosphorylation status of ERK1/2, JNK, type 1 protein phosphatase (PP1a), phospholamban (PLB) and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Our data showed that pretreatment with luteolin or SP600125 significantly improved the contraction of the isolated heart and cardiomyocytes, reduced infarct size and LDH activity, decreased the rate of apoptosis and increased the Bcl-2/Bax ratio. However, pretreatment with PD98059 alone before I/R had no effect on the above indexes. Further, these consequences of luteolin pretreatment were abrogated by co-administration of PD98059. We also found that pretreatment with PD98059 caused a significant increase in JNK expression, and SP600125 could cause ERK1/2 activation during I/R. In addition, we are the first to demonstrate that luteolin affects PP1a expression, which results in the up-regulation of the PLB, thereby relieving its inhibition of SERCA2a. These results showed that luteolin improves cardiomyocyte contractile function after I/R injury by an ERK1/2-PP1a-PLB-SERCA2a-mediated mechanism independent of JNK signaling pathway.


The dual PI3K/mTOR inhibitor NVP-BEZ235 prevents epithelial-mesenchymal transition induced by hypoxia and TGF-β1.

  • Guanyu Lin‎ et al.
  • European journal of pharmacology‎
  • 2014‎

Epithelial-mesenchymal transition (EMT) is regarded as the most important mechanism behind the initiation of cancer metastasis. Though there has been great interest in developing therapies aimed at impairing the process of EMT, only few molecules have been identified to orchestrate it so far. Here we report that the dual PI3K/mTOR inhibitor NVP-BEZ235 is capable of preventing human ovarian cancer cell line SKOV-3 and prostatic cancer cell line PC-3 from hypoxia- and TGF-β1-induced EMT. The addition of NVP-BEZ235 reverses the EMT-like morphologic changes, down-regulation of E-cadherin, and enhancement of cell migration induced by 1% O2 partially through interfering with the expression and transcriptional activity of Hif-1α via PI3K/mTOR pathway. In addition, NVP-BEZ235 inhibits TGF-β1-induced phosphorylation of Smad2/3 and Akt/GSK-3β, reduces the expression of Snail both in transcriptional and post-translational level, and consequently prevents the repression of E-cadherin expression as well as the increase of cell motility caused by TGF-β1. Moreover, in nude mice bearing SKOV-3 ovarian cancer xenografts, NVP-BEZ235 significantly increases the mRNA level of E-cadherin. Taken together, our study demonstrates, for the first time, NVP-BEZ235 can prevent microenvironment and growth factor induced EMT, which suggests this agent as a potential candidate for cancer metastasis treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: