Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 321 papers

Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A.

  • Cheng Luo‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

Severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid protein (NP) of SARS-CoV (SARS_NP) functions in enveloping the entire genomic RNA and interacts with viron structural proteins, thus playing important roles in the process of virus particle assembly and release. Protein-protein interaction analysis using bioinformatics tools indicated that SARS_NP may bind to human cyclophilin A (hCypA), and surface plasmon resonance (SPR) technology revealed this binding with the equilibrium dissociation constant ranging from 6 to 160nM. The probable binding sites of these two proteins were detected by modeling the three-dimensional structure of the SARS_NP-hCypA complex, from which the important interaction residue pairs between the proteins were deduced. Mutagenesis experiments were carried out for validating the binding model, whose correctness was assessed by the observed effects on the binding affinities between the proteins. The reliability of the binding sites derived by the molecular modeling was confirmed by the fact that the computationally predicted values of the relative free energies of the binding for SARS_NP (or hCypA) mutants to the wild-type hCypA (or SARS_NP) are in good agreement with the data determined by SPR. Such presently observed SARS_NP-hCypA interaction model might provide a new hint for facilitating the understanding of another possible SARS-CoV infection pathway against human cell.


Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease.

  • Hongyu Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson's disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of alpha-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100-1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-gamma coactivator 1alpha as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.


A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats.

  • Weili Shen‎ et al.
  • PloS one‎
  • 2008‎

Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and mitochondrial biogenesis/function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats.


Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice.

  • Hao Han‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2015‎

Plant sterols (PS) have potential preventive function in atherosclerosis due to their cholesterol-lowering ability. Dietary α-linolenic acid in flaxseed oil is associated with a reduction in cardiovascular events through its hypolipidemic and anti-inflammation properties. This study was designed to evaluate the effects of flaxseed oil containing α-linolenic acid ester of PS (ALA-PS) on atherosclerosis and investigate the underlying mechanisms. C57BL/6 mice were administered a regular diet and apoE knockout (apoE-KO) mice were given a high fat diet alone or supplemented with 5% flaxseed oil with or without 3.3% ALA-PS for 18 weeks. Results demonstrated that flaxseed oil containing ALA-PS was synergistically interaction in ameliorating atherosclerosis as well as optimizing overall lipid levels, inhibiting inflammation and reducing oxidative stress. These data were associated with the modification effects on expression levels of genes involved in lipid metabolism (PPARα, HMGCR, and SREBPs), inflammation (IL-6, TNF, MCP-1, and VCAM-1), and oxidative stress (NADPH oxidase).


Discovery of Novel Small Molecule Anti-HCV Agents via the CypA Inhibitory Mechanism Using O-Acylation-Directed Lead Optimization.

  • Wenzhong Yan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

In this work, the relationship between cyclophilin A (CypA) and HCV prompted us to screen a series of small molecule CypA inhibitors which were previously reported by our group. Among them, compound 1, discovered as a non-immunosuppressive anti-HCV agent with an EC50 value of 0.67 μM in a virus assay, was selected for further study. Subsequent chemical modification by O-acylation led to a novel class of molecules, among which compound 25 demonstrated the most potent anti-HCV activity in the virus assay (EC50 = 0.19 μM), but low cytotoxicity and hERG cardiac toxicity. The following studies (a solution stability assay and a simple pharmacokinetic test together with a CypA enzyme inhibition assay) preliminarily indicated that 25 was a prodrug of 1. To the best of our knowledge, 25 is probably the most potent currently reported small molecule anti-HCV agent acting via the CypA inhibitory mechanism. Consequently, our study has provided a new potential small molecule for curing HCV infection.


MAGEA10 gene expression in non-small cell lung cancer and A549 cells, and the affinity of epitopes with the complex of HLA-A(∗)0201 alleles.

  • Likui Wang‎ et al.
  • Cellular immunology‎
  • 2015‎

MAGEA10, a cancer/testis antigens expressed in tumors but not in normal tissues with the exception of testis and placenta, represents an attractive target for cancer immunotherapy. However, suppressive cytoenvironment and requirement of specific HLA-alleles presentation frequently led to immunotherapy failure. In this study MAGEA10 was scarcely expressed in cancer patients, but enhanced by viili polysaccharides, which indicates a possibility of increasing epitopes presentation. Furthermore the correlation of gene expression with methylation, indicated by R(2) value for MAGEA10 that was 3 times higher than the value for other MAGE genes tested, provides an explanation of why MAGEA10 was highly inhibited, this is also seen by Kaplan-Meier analysis because MAGEA10 did not change the patients' lifespan. By using Molecular-Docking method, 3 MAGEA10 peptides were found binding to the groove position of HLA-A(∗)0210 as same as MAGEA4 peptide co-crystallized with HLA-A(∗)0210, which indicates that they could be promising for HLA-A(∗)0201 presentation in immunotherapy.


Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors.

  • Nannan Zhou‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson's correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.


Altered Brain Activation in Early Drug-Naive Parkinson's Disease during Heat Pain Stimuli: An fMRI Study.

  • Ying Tan‎ et al.
  • Parkinson's disease‎
  • 2015‎

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor and nonmotor signs and symptoms. To date, many studies of PD have focused on its cardinal motor symptoms. To study the nonmotor signs of early PD, we investigated the reactions solicited by heat pain stimuli in early untreated PD patients without pain using fMRI. The activation patterns of contact heat stimuli (51°C) were assessed in 14 patients and 17 age- and sex-matched healthy controls. Patients with PD showed significant decreases in activation of the superior temporal gyrus (STG) and insula compared with controls. In addition, a significant relationship between activation of the insula and STG and the pain scores was observed in healthy controls but not in PD. This study provided further support that the insula and STG are important parts of the somatosensory circuitry recruited during the period of pain. The hypoactivity of the STG and insula in PD implied that functions including affective, cognitive, and sensory-discriminative processes, which are associated with the insula and STG, were disturbed. This finding supports the view that leaving early PD untreated could be tied directly to central nervous system dysfunction.


In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.

  • Xian Liu‎ et al.
  • Journal of cheminformatics‎
  • 2014‎

Ligand-based in silico target fishing can be used to identify the potential interacting target of bioactive ligands, which is useful for understanding the polypharmacology and safety profile of existing drugs. The underlying principle of the approach is that known bioactive ligands can be used as reference to predict the targets for a new compound.


Probabilistic diffusion tractography reveals improvement of structural network in musicians.

  • Jianfu Li‎ et al.
  • PloS one‎
  • 2014‎

Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain.


K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5.

  • Kuzhuvelil B Harikumar‎ et al.
  • Nature immunology‎
  • 2014‎

Although interleukin 1 (IL-1) induces expression of the transcription factor IRF1 (interferon-regulatory factor 1), the roles of IRF1 in immune and inflammatory responses and mechanisms of its activation remain elusive. Here we found that IRF1 was essential for IL-1-induced expression of the chemokines CXCL10 and CCL5, which recruit mononuclear cells into sites of sterile inflammation. Newly synthesized IRF1 acquired Lys63 (K63)-linked polyubiquitination mediated by the apoptosis inhibitor cIAP2 that was enhanced by the bioactive lipid S1P. In response to IL-1, cIAP2 and the sphingosine kinase SphK1 (the enzyme that generates S1P) formed a complex with IRF1, which led to its activation. Thus, IL-1 triggered a hitherto unknown signaling cascade that controlled the induction of IRF1-dependent genes that encode molecules important for sterile inflammation.


Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy.

  • Kaiqing Xue‎ et al.
  • Epilepsy research‎
  • 2014‎

The structural connection patterns of the human brain are the underlying bases for functional connectivity. Although abnormal functional connectivity has been uncovered in childhood absence epilepsy (CAE) in previous electroencephalography and functional magnetic resonance imaging studies, little is known regarding the structural connectivity in CAE. We hypothesized that the structural connectivity would be disrupted in response to the decreased brain function in CAE.


Molecular dynamic simulation to explore the molecular basis of Btk-PH domain interaction with Ins(1,3,4,5)P4.

  • Dan Lu‎ et al.
  • TheScientificWorldJournal‎
  • 2013‎

Bruton's tyrosine kinase contains a pleckstrin homology domain, and it specifically binds inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), which is involved in the maturation of B cells. In this paper, we studied 12 systems including the wild type and 11 mutants, K12R, S14F, K19E, R28C/H, E41K, L11P, F25S, Y40N, and K12R-R28C/H, to investigate any change in the ligand binding site of each mutant. Molecular dynamics simulations combined with the method of molecular mechanics/Poisson-Boltzmann solvent-accessible surface area have been applied to the twelve systems, and reasonable mutant structures and their binding free energies have been obtained as criteria in the final classification. As a result, five structures, K12R, K19E, R28C/H, and E41K mutants, were classified as "functional mutations," whereas L11P, S14F, F25S, and Y40N were grouped into "folding mutations." This rigorous study of the binding affinity of each of the mutants and their classification provides some new insights into the biological function of the Btk-PH domain and related mutation-causing diseases.


Identification of novel microRNA regulatory pathways associated with heterogeneous prostate cancer.

  • Yifei Tang‎ et al.
  • BMC systems biology‎
  • 2013‎

MicroRNAs (miRNAs) are potential regulators that contribute to the pathogenesis of cancer. Microarray technologies have been widely used to characterize aberrant miRNA expression patterns in cancer. Nevertheless, the miRNAs expression signatures identified for a same cancer differs among laboratories due to the cancer heterogeneity. In addition, how the deregulated miRNAs coordinately contribute to the tumourigenic process of prostate cancer remains elusive.


A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation.

  • Junyan Lu‎ et al.
  • Nucleic acids research‎
  • 2015‎

Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.


The Lateralization of Intrinsic Networks in the Aging Brain Implicates the Effects of Cognitive Training.

  • Cheng Luo‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Lateralization of function is an important organization of the human brain. The distribution of intrinsic networks in the resting brain is strongly related to cognitive function, gender and age. In this study, a longitudinal design with 1 year's duration was used to evaluate the cognitive training effects on the lateralization of intrinsic networks among healthy older adults. The subjects were divided into two groups randomly: one with multi-domain cognitive training over 3 months and the other as a wait-list control group. Resting state fMRI data were acquired before training and 1 year after training. We analyzed the functional lateralization in 10 common resting state fMRI networks. We observed statically significant training effects on the lateralization of two important RSNs related to high-level cognition: right- and left- frontoparietal networks (FPNs). The lateralization of the left-FPN was retained especially well in the training group but decreased in the control group. The increased lateralization with aging was observed in the cerebellum network (CereN), in which the lateralization was significantly increased in the control group, although the same change tendency was observed in the training group. These findings indicate that the lateralization of the high-level cognitive intrinsic networks is sensitive to multi-domain cognitive training. This study provides neuroimaging evidence to support the hypothesis that cognitive training should have an advantage in preventing cognitive decline in healthy older adults.


Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks.

  • Weifang Cao‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Neuroimaging studies have documented that aging can disrupt certain higher cognitive systems such as the default mode network (DMN), the salience network and the central executive network (CEN). The effect of cognitive training on higher cognitive systems remains unclear. This study used a 1-year longitudinal design to explore the cognitive training effect on three higher cognitive networks in healthy older adults. The community-living healthy older adults were divided into two groups: the multi-domain cognitive training group (24 sessions of cognitive training over a 3-months period) and the wait-list control group. All subjects underwent cognitive measurements and resting-state functional magnetic resonance imaging scanning at baseline and at 1 year after the training ended. We examined training-related changes in functional connectivity (FC) within and between three networks. Compared with the baseline, we observed maintained or increased FC within all three networks after training. The scans after training also showed maintained anti-correlation of FC between the DMN and CEN compared to the baseline. These findings demonstrated that cognitive training maintained or improved the functional integration within networks and the coupling between the DMN and CEN in older adults. Our findings suggested that multi-domain cognitive training can mitigate the aging-related dysfunction of higher cognitive networks.


Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience.

  • Diankun Gong‎ et al.
  • Neural plasticity‎
  • 2016‎

Action video games (AVGs) have attracted increasing research attention as they offer a unique perspective into the relation between active learning and neural plasticity. However, little research has examined the relation between AVG experience and the plasticity of neural network mechanisms. It has been proposed that AVG experience is related to the integration between Salience Network (SN) and Central Executive Network (CEN), which are responsible for attention and working memory, respectively, two cognitive functions essential for AVG playing. This study initiated a systematic investigation of this proposition by analyzing AVG experts' and amateurs' resting-state brain functions through graph theoretical analyses and functional connectivity. Results reveal enhanced intra- and internetwork functional integrations in AVG experts compared to amateurs. The findings support the possible relation between AVG experience and the neural network plasticity.


(+)-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice.

  • Yu Zhang‎ et al.
  • PloS one‎
  • 2012‎

Glucose transporter 4 (GLUT4) is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM). Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+)-Rutamarin (Rut) functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO) mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B) inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα), Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.


Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition.

  • Christopher J Vavricka‎ et al.
  • PLoS pathogens‎
  • 2011‎

The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan. Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity). Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1 (atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity. Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into group specific differences of oseltamivir binding and resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: