Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation.

  • Amy V Paschall‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b(+)Gr1(+) myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b(+)Gr1(+) MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo.


3'Igh enhancers hs3b/hs4 are dispensable for Myc deregulation in mouse plasmacytomas with T(12;15) translocations.

  • Alexander L Kovalchuk‎ et al.
  • Oncotarget‎
  • 2018‎

Myc-deregulating T(12;15) chromosomal translocations are the hallmark cytogenetic abnormalities of murine plasmacytomas (PCTs). In most PCTs, the immunoglobulin heavy chain (Igh) locus is broken between the Eμ enhancer and the 3' regulatory region (3'RR), making the latter the major candidate for orchestrating Myc deregulation. To elucidate the role of the Igh3'RR in tumorigenesis, we induced PCTs in Bcl-xL-transgenic mice deficient for the major Igh3'RR enhancer elements, hs3b and hs4 (hs3b-4-/-). Contrary to previous observations using a mouse lymphoma model, which showed no tumors with peripheral B-cell phenotype in hs3b-4-/- mice, these animals developed T(12;15)-positive PCTs, although with a lower incidence than hs3b-4+/+ (wild-type, WT) controls. In heterozygous hs3b-4+/- mice there was no allelic bias in targeting Igh for T(12;15). Molecular analyses of Igh/Myc junctions revealed dominance of Sμ region breakpoints versus the prevalence of Sγ or Sα in WT controls. Myc expression and Ig secretion in hs3b-4-/- PCTs did not differ from WT controls. We also evaluated the effect of a complete Igh3'RR deletion on Myc expression in the context of an established Igh/Myc translocation in ARS/Igh11-transgenic PCT cell lines. Cre-mediated deletion of the Igh3'RR resulted in gradual reduction of Myc expression, loss of proliferative activity and increased cell death, confirming the necessity of the Igh3'RR for Myc deregulation by T(12;15).


The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis.

  • Shuo Geng‎ et al.
  • Nature communications‎
  • 2016‎

Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.


A single-nucleotide polymorphism in a Plasmodium berghei ApiAP2 transcription factor alters the development of host immunity.

  • Munir Akkaya‎ et al.
  • Science advances‎
  • 2020‎

The acquisition of malaria immunity is both remarkably slow and unpredictable. At present, we know little about the malaria parasite genes that influence the host's ability to mount a protective immune response. Here, we show that a single-nucleotide polymorphism (SNP) resulting in a single amino acid change (S to F) in an ApiAP2 transcription factor in the rodent malaria parasite Plasmodium berghei (Pb) NK65 allowed infected mice to mount a T helper cell 1 (TH1)-type immune response that controlled subsequent infections. As compared to PbNK65S, PbNK65F parasites differentially expressed 46 genes, most of which are predicted to play roles in immune evasion. PbNK65F infections resulted in an early interferon-γ response and a later expansion of germinal centers, resulting in high levels of infected red blood cell-specific TH1-type immunoglobulin G2b (IgG2b) and IgG2c antibodies. Thus, the Pb ApiAP2 transcription factor functions as a critical parasite virulence factor in malaria infections.


Interleukin-1β-induced IRAK1 ubiquitination is required for TH-GM-CSF cell differentiation in T cell-mediated inflammation.

  • Yuan Hu‎ et al.
  • Journal of autoimmunity‎
  • 2019‎

Accumulating evidence suggests granulocyte macrophage-colony stimulating factor (GM-CSF) can function as an inflammatory mediator, but whether GM-CSF-producing CD4+ T cells (TH-GM-CSF) are a distinct T helper cell subset is lacking. Herein we demonstrate that interleukin (IL)-1β exclusively drives differentiation of naïve CD4+ T cells into TH-GM-CSF cells via inducing ubiquitination of IL-1 receptor-associated kinase 1 (IRAK1) and subsequent activation of the transcription factor NF-kappaB (NF-κB), independent of RAR-related orphan receptor gamma (RORγt) required for TH17 differentiation. In vivo, TH-GM-CSF cells are present in murine Citrobacter Rodentium infections and mediate colitis following adoptive transfer of CD4+ T cells into Rag1-/- mice via GM-CSF-induced macrophage activation. The TH-GM-CSF cell phenotype is stable and distinct from the TH17 genetic program, but IL-1β can convert pre-formed TH17 cells into TH-GM-CSF cells, thereby accounting for previously reported associations between IL-17 and GM-CSF. Together, our results newly identify IL-1β/NF-κB-dependent TH-GM-CSF cells as a unique T helper cell subset and highlight the importance of CD4+ T cell-derived GM-CSF induced macrophage activation as a previously undescribed T cell effector mechanism.


Tempol, an intracellular antioxidant, inhibits tissue factor expression, attenuates dendritic cell function, and is partially protective in a murine model of cerebral malaria.

  • Ivo M B Francischetti‎ et al.
  • PloS one‎
  • 2014‎

The role of intracellular radical oxygen species (ROS) in pathogenesis of cerebral malaria (CM) remains incompletely understood.


Antiviral Adaptor MAVS Promotes Murine Lupus With a B Cell Autonomous Role.

  • Wenxiang Sun‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by increased production of autoantibodies, which commonly target nuclear antigens, and concomitant deposition of immune complexes that cause inflammation in tissues. SLE is often associated with increased systemic expression of type I interferons, in some cases due to dysregulation in nucleic acid-sensing innate pathways. There is strong genetic evidence for a link between cytoplasmic RNA sensing pathways (RIG-I/MDA5) and SLE, both in human patients and murine models, however questions still remain regarding pathway initiation, cell types involved and downstream effects. Here we show that MAVS, an essential adaptor for RIG-I/MDA5 signaling, is necessary for all symptoms of autoimmune disease that develop spontaneously in the lupus model FcγRIIB-/- mice. This effect was independent of type I interferon signaling, TLR7 expression or STING, all three factors that have been connected to autoimmunity. Mixed bone marrow reconstitution experiments showed reduced occurrence in autoimmune germinal centers and diminished autoantibody production by MAVS-deficient B cells. Thus, MAVS plays a B cell intrinsic role in autoreactive B cell activation that is independent of its anti-viral functions and independent of elevated type I interferon expression.


Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein.

  • Chang Hoon Lee‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein-tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5' sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.


Expression of the cyclin-dependent kinase inhibitor p27 and its deregulation in mouse B cell lymphomas.

  • Chen-Feng Qi‎ et al.
  • Leukemia research‎
  • 2006‎

CDKN1B (p27) regulates cell-cycle progression at the G1-S transition by suppressing the cyclin E/CDK2 kinase complex. In normal lymphocytes and most human B cell non-Hodgkin lymphomas (NHL), there is an inverse correlation between proliferative activity and expression of p27; however, a subset of NHL with high mitotic indices expresses p27, which is inactive due to sequestration in nuclear protein complexes or due to cytoplasmic retention. Our studies of mouse B cell NHL also identified cases with high proliferative activity and high levels of p27 at a surprisingly high frequency. Here, p27 was complexed with D-type cyclins 1 and 3 and with the COPS9 protein, JAB1. In addition, we found cytoplasmic sequestration following phosphorylation by activated AKT.


Characterization of ARF-BP1/HUWE1 interactions with CTCF, MYC, ARF and p53 in MYC-driven B cell neoplasms.

  • Chen-Feng Qi‎ et al.
  • International journal of molecular sciences‎
  • 2012‎

Transcriptional activation of MYC is a hallmark of many B cell lineage neoplasms. MYC provides a constitutive proliferative signal but can also initiate ARF-dependent activation of p53 and apoptosis. The E3 ubiquitin ligase, ARF-BP1, encoded by HUWE1, modulates the activity of both the MYC and the ARF-p53 signaling pathways, prompting us to determine if it is involved in the pathogenesis of MYC-driven B cell lymphomas. ARF-BP1 was expressed at high levels in cell lines from lymphomas with either wild type or mutated p53 but not in ARF-deficient cells. Downregulation of ARF-BP1 resulted in elevated steady state levels of p53, growth arrest and apoptosis. Co-immunoprecipitation studies identified a multiprotein complex comprised of ARF-BP1, ARF, p53, MYC and the multifunctional DNA-binding factor, CTCF, which is involved in the transcriptional regulation of MYC, p53 and ARF. ARF-BP1 bound and ubiquitylated CTCF leading to its proteasomal degradation. ARF-BP1 and CTCF thus appear to be key cofactors linking the MYC proliferative and p53-ARF apoptotic pathways. In addition, ARF-BP1 could be a therapeutic target for MYC-driven B lineage neoplasms, even if p53 is inactive, with inhibition reducing the transcriptional activity of MYC for its target genes and stabilizing the apoptosis-promoting activities of p53.


T cell–derived inducible nitric oxide synthase switches off Th17 cell differentiation.

  • Jianjun Yang‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

RORγt is necessary for the generation of TH17 cells but the molecular mechanisms for the regulation of TH17 cells are still not fully understood. We show that activation of CD4⁺ T cells results in the expression of inducible nitric oxide synthase (iNOS). iNOS-deficient mice displayed enhanced T(H)17 cell differentiation but without major effects on either T(H)1 or T(H)2 cell lineages, whereas endothelial NOS (eNOS) or neuronal NOS (nNOS) mutant mice showed comparable T(H)17 cell differentiation compared with wild-type control mice. The addition of N6-(1-iminoethyl)-l-lysine dihydrochloride (L-NIL), the iNOS inhibitor, significantly enhanced TH17 cell differentiation, and S-nitroso-N-acetylpenicillamine (SNAP), the NO donor, dosedependently reduced the percentage of IL-17–producing CD4⁺ T cells. NO mediates nitration of tyrosine residues in RORγt, leading to the suppression of RORγt-induced IL-17 promoter activation, indicating that NO regulates IL-17 expression at the transcriptional level. Finally, studies of an experimental model of colitis showed that iNOS deficiency results in more severe inflammation with an enhanced T(H)17 phenotype. These results suggest that NO derived from iNOS in activated T cells plays a negative role in the regulation of T(H)17 cell differentiation and highlight the importance of intrinsic programs for the control of T(H)17 immune responses.


AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements.

  • Alexander L Kovalchuk‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Activation-induced cytidine deaminase (AID) is required for immunoglobulin (Ig) class switch recombination and somatic hypermutation, and has also been implicated in translocations between Ig switch regions and c-Myc in plasma cell tumors in mice. We asked if AID is required for accelerated tumor development in pristane-treated Bcl-xL transgenic BALB/c mice deficient in AID (pBxAicda-/-). pBxAicda-/- mice developed tumors with a lower frequency (24 vs. 62%) and a longer mean latency (108 vs. 36 d) than AID-sufficient mice. The tumors appeared in oil granuloma tissue and did not form ascites. By interphase fluorescence in situ hybridization, six out of nine pBxAicda-/- primary tumors had T(12;15) and one had T(6;15) chromosomal translocations. Two tumors were transplantable and established as stable cell lines. Molecular and cytogenetic analyses showed that one had an unusual unbalanced T(12;15) translocation, with IgH Cmu and Pvt-1 oriented head to tail at the breakpoint, resulting in an elevated expression of c-Myc. In contrast, the second was T(12;15) negative, but had an elevated N-Myc expression caused by a paracentric inversion of chromosome 12. Thus, novel mechanisms juxtapose Ig and Myc-family genes in AID-deficient plasma cell tumors.


Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5.

  • Liang Peng‎ et al.
  • EBioMedicine‎
  • 2016‎

The regulation of macrophage orientation pathological conditions is important but still incompletely understood. Here, we show that IL-10 and Rag1 double knockout mice spontaneously develop colitis with dominant M1 macrophage phenotype, suggesting that IL-10 regulates macrophage orientation in inflammation. We demonstrate that IL-10 stimulation induced miR-146b expression, and that the expression of miR-146b was impaired in IL-10 deficient macrophages. Our data show that miR-146b targets IRF5, resulting in the regulation of macrophage activation. Furthermore, miR-146b deficient mice developed intestinal inflammation with enhanced M1 macrophage polarization. Finally, miR-146b mimic treatment significantly suppresses M1 macrophage activation and ameliorates colitis development in vivo. Collectively, the results suggest that IL-10 dependent miR-146b plays an important role in the modulation of M1 macrophage orientation.


Non-pathogenic tissue-resident CD8+ T cells uniquely accumulate in the brains of lupus-prone mice.

  • Peter A Morawski‎ et al.
  • Scientific reports‎
  • 2017‎

Severe lupus often includes psychiatric and neurological sequelae, although the cellular contributors to CNS disease remain poorly defined. Using intravascular staining to discriminate tissue-localized from blood-borne cells, we find substantial accumulation of CD8+ T cells relative to other lymphocytes in brain tissue, which correlates with lupus disease and limited neuropathology. This is in contrast to all other affected organs, where infiltrating CD4+ cells are predominant. Brain-infiltrating CD8+ T cells represent an activated subset of those found in the periphery, having a resident-memory phenotype (CD69+CD122-PD1+CD44+CD62L-) and expressing adhesion molecules (VLA-4+LFA-1+) complementary to activated brain endothelium. Remarkably, infiltrating CD8+ T cells do not cause tissue damage in lupus-prone mice, as genetic ablation of these cells via β2 m deficiency does not reverse neuropathology, but exacerbates disease both in the brain and globally despite decreased serum IgG levels. Thus, lupus-associated inflammation disrupts the blood-brain barrier in a discriminating way biased in favor of non-pathogenic CD8+ T cells relative to other infiltrating leukocytes, perhaps preventing further tissue damage in such a sensitive organ.


Inhibiting the Mammalian target of rapamycin blocks the development of experimental cerebral malaria.

  • Emile B Gordon‎ et al.
  • mBio‎
  • 2015‎

Malaria is an infectious disease caused by parasites of several Plasmodium spp. Cerebral malaria (CM) is a common form of severe malaria resulting in nearly 700,000 deaths each year in Africa alone. At present, there is no adjunctive therapy for CM. Although the mechanisms underlying the pathogenesis of CM are incompletely understood, it is likely that both intrinsic features of the parasite and the human host's immune response contribute to disease. The kinase mammalian target of rapamycin (mTOR) is a central regulator of immune responses, and drugs that inhibit the mTOR pathway have been shown to be antiparasitic. In a mouse model of CM, experimental CM (ECM), we show that the mTOR inhibitor rapamycin protects against ECM when administered within the first 4 days of infection. Treatment with rapamycin increased survival, blocked breakdown of the blood-brain barrier and brain hemorrhaging, decreased the influx of both CD4(+) and CD8(+) T cells into the brain and the accumulation of parasitized red blood cells in the brain. Rapamycin induced marked transcriptional changes in the brains of infected mice, and analysis of transcription profiles predicted that rapamycin blocked leukocyte trafficking to and proliferation in the brain. Remarkably, animals were protected against ECM even though rapamycin treatment significantly increased the inflammatory response induced by infection in both the brain and spleen. These results open a new avenue for the development of highly selective adjunctive therapies for CM by targeting pathways that regulate host and parasite metabolism.


Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization.

  • Geming Lu‎ et al.
  • Nature communications‎
  • 2015‎

Here we show that iNOS-deficient mice display enhanced classically activated M1 macrophage polarization without major effects on alternatively activated M2 macrophages. eNOS and nNOS mutant mice show comparable M1 macrophage polarization compared with wild-type control mice. Addition of N6-(1-iminoethyl)-L-lysine dihydrochloride, an iNOS inhibitor, significantly enhances M1 macrophage polarization while S-nitroso-N-acetylpenicillamine, a NO donor, suppresses M1 macrophage polarization. NO derived from iNOS mediates nitration of tyrosine residues in IRF5 protein, leading to the suppression of IRF5-targeted M1 macrophage signature gene activation. Computational analyses corroborate a circuit that fine-tunes the expression of IL-12 by iNOS in macrophages, potentially enabling versatile responses based on changing microenvironments. Finally, studies of an experimental model of endotoxin shock show that iNOS deficiency results in more severe inflammation with an enhanced M1 macrophage activation phenotype. These results suggest that NO derived from iNOS in activated macrophages suppresses M1 macrophage polarization.


Plasmodium yoelii Erythrocyte-Binding-like Protein Modulates Host Cell Membrane Structure, Immunity, and Disease Severity.

  • Yu-Chih Peng‎ et al.
  • mBio‎
  • 2020‎

Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoelliinigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies.IMPORTANCE Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies.


MAVS Positively Regulates Mitochondrial Integrity and Metabolic Fitness in B Cells.

  • Hongsheng Wang‎ et al.
  • ImmunoHorizons‎
  • 2023‎

Activated B cells experience metabolic changes that require mitochondrial remodeling, in a process incompletely defined. In this study, we report that mitochondrial antiviral signaling protein (MAVS) is involved in BCR-initiated cellular proliferation and prolonged survival. MAVS is well known as a mitochondrial-tethered signaling adaptor with a central role in viral RNA-sensing pathways that induce type I IFN. The role of MAVS downstream of BCR stimulation was recognized in absence of IFN, indicative of a path for MAVS activation that is independent of viral infection. Mitochondria of BCR-activated MAVS-deficient mouse B cells exhibited a damaged phenotype including disrupted mitochondrial morphology, excess mitophagy, and the temporal progressive blunting of mitochondrial oxidative capacity with mitochondrial hyperpolarization and cell death. Costimulation of MAVS-deficient B cells with anti-CD40, in addition to BCR stimulation, partially corrected the mitochondrial structural defects and functionality. Our data reveal a (to our knowledge) previously unrecognized role of MAVS in controlling the metabolic fitness of B cells, most noticeable in the absence of costimulatory help.


T follicular helper cells restricted by IRF8 contribute to T cell-mediated inflammation.

  • Ruihua Zhang‎ et al.
  • Journal of autoimmunity‎
  • 2019‎

The follicular helper T cell (TFH) are established regulators of germinal center (GC) B cells, whether TFH have pathogenic potential independent of B cells is unknown. Based on in vitro TFH cell differentiation, in vivo T cell transfer animal colitis model, and intestinal tissues of inflammatory bowel disease (IBD) patients, TFH and its functions in colitis development were analyzed by FACS, ChIP, ChIP-sequencing, WB, ELISA and PCR. Herein we demonstrate that intestinal tissues of patients and colon tissues obtained from Rag1-/- recipients of naïve CD4+ T cells with colitis, each over-express TFH-associated gene products. Adoptive transfer of naïve Bcl6-/- CD4+ T cells into Rag1-/- recipient mice abrogated development of colitis and limited TFH differentiation in vivo, demonstrating a mechanistic link. In contrast, T cell deficiency of interferon regulatory factor 8 (IRF8) resulted in augmentation of TFH induction in vitro and in vivo. Functional studies showed that adoptive transfer of IRF8 deficient CD4+ T cells into Rag1-/- recipients exacerbated colitis development associated with increased gut TFH-related gene expression, while Irf8-/-/Bcl6-/- CD4+ T cells abrogated colitis, together indicating that IRF8-regulated TFH can directly cause colon inflammation. Molecular analyses revealed that IRF8 suppresses TFH differentiation by inhibiting transcription and transactivation of the TF IRF4, which is also known to be essential for TFH induction. Our documentation showed that IRF8-regulated TFH can function as B-cell-independent, pathogenic, mediators of colitis suggests that targeting TFH could be effective for treatment of IBD.


Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation.

  • Xinshou Ouyang‎ et al.
  • Nature communications‎
  • 2011‎

T(H)17 cells are recognized as a unique subset of T helper cells that have critical roles in the pathogenesis of autoimmunity and tissue inflammation. Although RORγt is necessary for the generation of T(H)17 cells, the molecular mechanisms underlying the functional diversity of T(H)17 cells are not fully understood. Here we show that a member of interferon regulatory factor (IRF) family of transcription factors, IRF8, has a critical role in silencing T(H)17-cell differentiation. Mice with a conventional knockout, as well as a T cell-specific deletion, of the Irf8 gene exhibited more efficient T(H)17 cells. Indeed, studies of an experimental model of colitis showed that IRF8 deficiency resulted in more severe inflammation with an enhanced T(H)17 phenotype. IRF8 was induced steadily and inhibited T(H)17-cell differentiation during T(H)17 lineage commitment at least in part through its physical interaction with RORγt. These findings define IRF8 as a novel intrinsic transcriptional inhibitor of T(H)17-cell differentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: