Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells.

  • Sicong He‎ et al.
  • eLife‎
  • 2018‎

The origin of Langerhans cells (LCs), which are skin epidermis-resident macrophages, remains unclear. Current lineage tracing of LCs largely relies on the promoter-Cre-LoxP system, which often gives rise to contradictory conclusions with different promoters. Thus, reinvestigation with an improved tracing method is necessary. Here, using a laser-mediated temporal-spatial resolved cell labeling method, we demonstrated that most adult LCs originated from the ventral wall of the dorsal aorta (VDA), an equivalent to the mouse aorta, gonads, and mesonephros (AGM), where both hematopoietic stem cells (HSCs) and non-HSC progenitors are generated. Further fine-fate mapping analysis revealed that the appearance of LCs in adult zebrafish was correlated with the development of HSCs, but not T cell progenitors. Finally, we showed that the appearance of tissue-resident macrophages in the brain, liver, heart, and gut of adult zebrafish was also correlated with HSCs. Thus, the results of our study challenged the EMP-origin theory for LCs.


An Ectoderm-Derived Myeloid-like Cell Population Functions as Antigen Transporters for Langerhans Cells in Zebrafish Epidermis.

  • Xi Lin‎ et al.
  • Developmental cell‎
  • 2019‎

Tissue-resident macrophages (TRMs) are highly heterogeneous and engage in a wide range of diverse functions. Yet, the heterogeneities of their origins and functions remain incompletely defined. Here, we report the identification and characterization of an ectoderm-derived myeloid-like cell, which we refer to as metaphocyte. We show that metaphocytes are highly similar to conventional Langerhans cells (cLCs), the resident macrophages in epidermis, in transcriptome, morphology, and anatomic location. However, unlike cLCs, metaphocytes respond neither to tissue injury nor to bacterial infection but rather sample soluble antigens from external environment through transepithelial protrusions and transfer them to cLCs via apoptosis-phagocytosis axis. This antigen transfer is critical for zebrafish to respond to soluble antigens because the depletion of metaphocytes significantly reduces cLC antigen uptake. Our study documents the existence of ectoderm-derived myeloid-like cells that manifest distinct function from conventional TRMs and opens a new paradigm for investigation of the heterogeneities of resident immune cells.


Cross-organ single-cell transcriptome profiling reveals macrophage and dendritic cell heterogeneity in zebrafish.

  • Qiuxia Zhou‎ et al.
  • Cell reports‎
  • 2023‎

Tissue-resident macrophages (TRMs) and dendritic cells (DCs) are highly heterogeneous and essential for immunity, tissue regeneration, and homeostasis maintenance. Here, we comprehensively profile the heterogeneity of TRMs and DCs across adult zebrafish organs via single-cell RNA sequencing. We identify two macrophage subsets: pro-inflammatory macrophages with potent phagocytosis signatures and pro-remodeling macrophages with tissue regeneration signatures in barrier tissues, liver, and heart. In parallel, one conventional dendritic cell (cDC) population with prominent antigen presentation capacity and plasmacytoid dendritic cells (pDCs) featured by anti-virus properties are also observed in these organs. Remarkably, in addition to a single macrophage/microglia population with potent phagocytosis capacity, a pDC population and two distinct cDC populations are identified in the brain. Finally, we generate specific reporter lines for in vivo tracking of macrophage and DC subsets. Our study depicts the landscape of TRMs and DCs and creates valuable tools for in-depth study of these cells in zebrafish.


Metaphocytes are IL-22BP-producing cells regulated by ETS transcription factor Spic and essential for zebrafish barrier immunity.

  • Changlong Zhao‎ et al.
  • Cell reports‎
  • 2023‎

Metaphocytes are tissue-resident macrophage (TRM)/dendritic cell (DC)-like cells of non-hematopoietic origin in zebrafish barrier tissues. One remarkable property of metaphocytes is their ability to capture soluble antigens from the external environment via transepithelial protrusions, a unique function manifested by specialized subpopulations of the TRMs/DCs in mammal barrier tissues. Yet, how metaphocytes acquire myeloid-like cell properties from non-hematopoietic precursors and how they regulate barrier immunity remains unknown. Here, we show that metaphocytes are in situ generated from local progenitors guided by the ETS transcription factor Spic, the deficiency of which results in the absence of metaphocytes. We further document that metaphocytes are the major IL-22BP-producing cells, and the depletion of metaphocytes causes dysregulated barrier immunity that resembles the phenotype of IL-22BP-deficient mice. These findings reveal the ontogeny, development, and function of metaphocytes in zebrafish, which facilitates our understanding of the nature and function of the mammalian TRM/DC counterparts.


Endoderm-Derived Myeloid-like Metaphocytes in Zebrafish Gill Mediate Soluble Antigen-Induced Immunity.

  • Xi Lin‎ et al.
  • Cell reports‎
  • 2020‎

Immune cells in the mucosal barriers of vertebrates are highly heterogeneous in their origin and function. This heterogeneity is further exemplified by the recent discovery of ectoderm-derived immune cells-metaphocytes in zebrafish epidermis. Yet, whether non-hematopoiesis-derived immune cells generally exist in barrier tissues remains obscured. Here, we report the identification and characterization of an endoderm-derived immune cell population in the gill and intestine of zebrafish. Transcriptome analysis reveals that the endoderm-derived immune cells are myeloid-like cells with high similarities to the ectoderm-derived metaphocytes in epidermis. Like metaphocytes in epidermis, the endoderm-derived immune cells are non-phagocytic but professional in external soluble antigen uptake. Depletion of the endoderm-derived immune cells in gill hinder the local immune response to external soluble stimulants. This study demonstrates a general existence of non-hematopoiesis-derived immune cells in zebrafish mucosal barriers and challenges the prevalent view that resident immune cells in mucosal barriers arise exclusively from hematopoiesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: