2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

NFκB-mediated CXCL1 production in spinal cord astrocytes contributes to the maintenance of bone cancer pain in mice.

  • Jie Xu‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

Bone cancer pain (BCP) is one of the most disabling factors in patients suffering from primary bone cancer or bone metastases. Recent studies show several chemokines (for example, CCL2, CXCL10) in the spinal cord are involved in the pathogenesis of BCP. Here we investigated whether and how spinal CXCL1 contributes to BCP.


Demethylation of G-Protein-Coupled Receptor 151 Promoter Facilitates the Binding of Krüppel-Like Factor 5 and Enhances Neuropathic Pain after Nerve Injury in Mice.

  • Bao-Chun Jiang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

G-protein-coupled receptors are considered to be cell-surface sensors of extracellular signals, thereby having a crucial role in signal transduction and being the most fruitful targets for drug discovery. G-protein-coupled receptor 151 (GPR151) was reported to be expressed specifically in the habenular area. Here we report the expression and the epigenetic regulation of GRP151 in the spinal cord after spinal nerve ligation (SNL) and the contribution of GPR151 to neuropathic pain in male mice. SNL dramatically increased GPR151 expression in spinal neurons. GPR151 mutation or spinal inhibition by shRNA alleviated SNL-induced mechanical allodynia and heat hyperalgesia. Interestingly, the CpG island in the GPR151 gene promoter region was demethylated, the expression of DNA methyltransferase 3b (DNMT3b) was decreased, and the binding of DNMT3b with GPR151 promoter was reduced after SNL. Overexpression of DNMT3b in the spinal cord decreased GPR151 expression and attenuated SNL-induced neuropathic pain. Furthermore, Krüppel-like factor 5 (KLF5), a transcriptional factor of the KLF family, was upregulated in spinal neurons, and the binding affinity of KLF5 with GPR151 promoter was increased after SNL. Inhibition of KLF5 reduced GPR151 expression and attenuated SNL-induced pain hypersensitivity. Further mRNA microarray analysis revealed that mutation of GPR151 reduced the expression of a variety of pain-related genes in response to SNL, especially mitogen-activated protein kinase (MAPK) signaling pathway-associated genes. This study reveals that GPR151, increased by DNA demethylation and the enhanced interaction with KLF5, contributes to the maintenance of neuropathic pain via increasing MAPK pathway-related gene expression.SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are targets of various clinically approved drugs. Here we report that SNL increased GPR151 expression in the spinal cord, and mutation or inhibition of GPR151 alleviated SNL-induced neuropathic pain. In addition, SNL downregulated the expression of DNMT3b, which caused demethylation of GPR151 gene promoter, facilitated the binding of transcriptional factor KLF5 with the GPR151 promoter, and further increased GPR151 expression in spinal neurons. The increased GPR151 may contribute to the pathogenesis of neuropathic pain via activating MAPK signaling and increasing pain-related gene expression. Our study reveals an epigenetic mechanism underlying GPR151 expression and suggests that targeting GPR151 may offer a new strategy for the treatment of neuropathic pain.


Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages.

  • Xiao-Bo Wu‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

Progression of acute pancreatitis (AP) into a severe form usually results in a life-threatening condition with multiple organ dysfunction, and in particular acute lung injury (ALI), often contributes to the majority of AP-associated deaths. Increasing evidence has shown that uncontrolled activation of the immune system with rapid production of inflammatory cytokines play a dominant role in this process. As an intracellular inflammatory signaling platform, the NOD-like receptor protein 3 (NLRP3) inflammasome, is recently reported to be involved in the pathogenesis of AP progression, however, the relationship between NLRP3 inflammasome activation and AP-associated lung injury remains unclear yet. Here, we show that NLRP3 inflammasome activation and subsequent pyroptosis in alveolar macrophages (AMs) is responsible for the lung injury secondary to AP. In addition, plasma-derived exosomes from AP mice is capable of triggering NLRP3-dependent pyroptosis in AMs. Inhibition of exosome release or uptake in vivo by inhibitors substantially suppresses AMs pyroptosis and thereby alleviates AP-induced pulmonary lesion. Collectively, the current work reveals for the first time the involvement of NLRP3-dependent pyroptosis induced by plasma exosomes in the pathogenesis of AP-induced ALI, suggesting that the exosome-mediated NLRP3 inflammatory pathway is a potential therapeutic target for the treatment of lung injury during AP.


TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG.

  • Zhi-Jun Zhang‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

Toll-like receptors (TLRs) are nucleic acid-sensing receptors and have been implicated in mediating pain and itch. Here we report that Tlr8 -/- mice show normal itch behaviors, but have defects in neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased TLR8 expression in small-diameter IB4+ DRG neurons. Inhibition of TLR8 in the DRG attenuated SNL-induced pain hypersensitivity. Conversely, intrathecal or intradermal injection of TLR8 agonist, VTX-2337, induced TLR8-dependent pain hypersensitivity. Mechanistically, TLR8, localizing in the endosomes and lysosomes, mediated ERK activation, inflammatory mediators' production, and neuronal hyperexcitability after SNL. Notably, miR-21 was increased in DRG neurons after SNL. Intrathecal injection of miR-21 showed the similar effects as VTX-2337 and inhibition of miR-21 in the DRG attenuated neuropathic pain. The present study reveals a previously unknown role of TLR8 in the maintenance of neuropathic pain, suggesting that miR-21-TLR8 signaling may be potential new targets for drug development against this type of chronic pain.


Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice.

  • Bao-Chun Jiang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

DNA methylation has been implicated in the pathogenesis of chronic pain. However, the specific genes regulated by DNA methylation under neuropathic pain condition remain largely unknown. Here we investigated how chemokine receptor CXCR3 is regulated by DNA methylation and how it contributes to neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased Cxcr3 mRNA and protein expression in the neurons of the spinal cord. Meanwhile, the CpG (5'-cytosine-phosphate-guanine-3') island in the Cxcr3 gene promoter region was demethylated, and the expression of DNA methyltransferase 3b (DNMT3b) was decreased. SNL also increased the binding of CCAAT (cytidine-cytidine-adenosine-adenosine-thymidine)/enhancer binding protein α (C/EBPα) with Cxcr3 promoter and decreased the binding of DNMT3b with Cxcr3 promoter in the spinal cord. C/EBPα expression was increased in spinal neurons after SNL, and inhibition of C/EBPα by intrathecal small interfering RNA attenuated SNL-induced pain hypersensitivity and reduced Cxcr3 expression. Furthermore, SNL-induced mechanical allodynia and heat hyperalgesia were markedly reduced in Cxcr3-/- mice. Spinal inhibition of Cxcr3 by shRNA or CXCR3 antagonist also attenuated established neuropathic pain. Moreover, CXCL10, the ligand of CXCR3, was increased in spinal neurons and astrocytes after SNL. Superfusing spinal cord slices with CXCL10 enhanced spontaneous EPSCs and potentiated NMDA-induced and AMPA-induced currents of lamina II neurons. Finally, intrathecal injection of CXCL10 induced CXCR3-dependent pain hypersensitivity in naive mice. Collectively, our results demonstrated that CXCR3, increased by DNA demethylation and the enhanced interaction with C/EBPα, can be activated by CXCL10 to facilitate excitatory synaptic transmission and contribute to the maintenance of neuropathic pain.


CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain.

  • Xiao-Bo Wu‎ et al.
  • Scientific reports‎
  • 2016‎

CXCL13 is a B lymphocyte chemoattractant and activates CXCR5 receptor in the immune system. Here we investigated whether CXCL13/CXCR5 mediates inflammatory pain in dorsal root ganglia (DRG) and the underlying mechanisms. Peripheral injection of complete Freund's Adjuvant (CFA) increased the expression of CXCL13 and CXCR5 in DRG neurons. In Cxcr5-/- mice, CFA-induced pain hypersensitivity were attenuated. Whole-cell patch-clamp recording showed that the excitability of dissociated DRG neurons was increased after CFA injection or CXCL13 incubation from wild-type (WT) mice, but not from Cxcr5-/- mice. Additionally, sodium channel Nav1.8 was co-expressed with CXCR5 in dissociated DRG neurons, and the increased neuronal excitability induced by CFA or CXCL13 was reduced by Nav1.8 blocker. Intrathecal injection of Nav1.8 blocker also attenuated intrathecal injection of CXCL13-induced pain hypersensitivity. Furthermore, CXCL13 increased Nav1.8 current density in DRG neurons, which was inhibited by p38 MAP kinase inhibitor. CFA and CXCL13 increased p38 phosphorylation in the DRG of WT mice but not Cxcr5-/- mice. Finally, intrathecal p38 inhibitor alleviated CXCL13-induced pain hypersensitivity. Taken together, these results demonstrated that CXCL13, upregulated by peripheral inflammation, acts on CXCR5 on DRG neurons and activates p38, which increases Nav1.8 current density and further contributes to the maintenance of inflammatory pain.


NFAT1 Orchestrates Spinal Microglial Transcription and Promotes Microglial Proliferation via c-MYC Contributing to Nerve Injury-Induced Neuropathic Pain.

  • Bao-Chun Jiang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

Peripheral nerve injury-induced spinal microglial proliferation plays a pivotal role in neuropathic pain. So far, key intracellular druggable molecules involved in this process are not identified. The nuclear factor of activated T-cells (NFAT1) is a master regulator of immune cell proliferation. Whether and how NFAT1 modulates spinal microglial proliferation during neuropathic pain remain unknown. Here it is reported that NFAT1 is persistently upregulated in microglia after spinal nerve ligation (SNL), which is regulated by TET2-mediated DNA demethylation. Global or microglia-specific deletion of Nfat1 attenuates SNL-induced pain and decreases excitatory synaptic transmission of lamina II neurons. Furthermore, deletion of Nfat1 decreases microglial proliferation and the expression of multiple microglia-related genes, such as cytokines, transmembrane signaling receptors, and transcription factors. Particularly, SNL increases the binding of NFAT1 with the promoter of Itgam, Tnf, Il-1b, and c-Myc in the spinal cord. Microglia-specific overexpression of c-MYC induces pain hypersensitivity and microglial proliferation. Finally, inhibiting NFAT1 and c-MYC by intrathecal injection of inhibitor or siRNA alleviates SNL-induced neuropathic pain. Collectively, NFAT1 is a hub transcription factor that regulates microglial proliferation via c-MYC and guides the expression of the activated microglia genome. Thus, NFAT1 may be an effective target for treating neuropathic pain.


Excitatory Projections from the Prefrontal Cortex to Nucleus Accumbens Core D1-MSNs and κ Opioid Receptor Modulate Itch-Related Scratching Behaviors.

  • Xiao-Bo Wu‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2023‎

Itch is an uncomfortable and complex sensation that elicits the desire to scratch. The nucleus accumbens (NAc) activity is important in driving sensation, motivation, and emotion. Excitatory afferents from the medial prefrontal cortex (mPFC), amygdala, and hippocampus are crucial in tuning the activity of dopamine receptor D1-expressing and D2-expressing medium spiny neurons (Drd1-MSN and Drd2-MSN) in the NAc. However, a cell-type and neural circuity-based mechanism of the NAc underlying acute itch remains unclear. We found that acute itch induced by compound 48/80 (C48/80) decreased the intrinsic membrane excitability in Drd1-MSNs, but not in Drd2-MSNs, in the NAc core of male mice. Chemogenetic activation of Drd1-MSNs alleviated C48/80-induced scratching behaviors but not itch-related anxiety-like behaviors. In addition, C48/80 enhanced the frequency of spontaneous EPSCs (sEPSCs) and reduced the paired-pulse ratio (PPR) of electrical stimulation-evoked EPSCs in Drd1-MSNs. Furthermore, C48/80 increased excitatory synaptic afferents to Drd1-MSNs from the mPFC, not from the basolateral amygdala (BLA) or ventral hippocampus (vHipp). Consistently, the intrinsic excitability of mPFC-NAc projecting pyramidal neurons was increased after C48/80 treatment. Chemogenetic inhibition of mPFC-NAc excitatory synaptic afferents relieved the scratching behaviors. Moreover, pharmacological activation of κ opioid receptor (KOR) in the NAc core suppressed C48/80-induced scratching behaviors, and the modulation of KOR activity in the NAc resulted in the changes of presynaptic excitatory inputs to Drd1-MSNs in C48/80-treated mice. Together, these results reveal the neural plasticity in synapses of NAc Drd1-MSNs from the mPFC underlying acute itch and indicate the modulatory role of the KOR in itch-related scratching behaviors.SIGNIFICANCE STATEMENT Itch stimuli cause strongly scratching desire and anxiety in patients. However, the related neural mechanisms remain largely unclear. In the present study, we demonstrated that the pruritogen compound 48/80 (C48/80) shapes the excitability of dopamine receptor D1-expressing medium spiny neurons (Drd1-MSNs) in the nucleus accumbens (NAc) core and the glutamatergic synaptic afferents from medial prefrontal cortex (mPFC) to these neurons. Chemogenetic activation of Drd1-MSNs or inhibition of mPFC-NAc excitatory synaptic afferents relieves the scratching behaviors. In addition, pharmacological activation of κ opioid receptor (KOR) in the NAc core alleviates C48/80-induced itch. Thus, targeting mPFC-NAc Drd1-MSNs or KOR may provide effective treatments for itch.


Ion channels in cancer-induced bone pain: from molecular mechanisms to clinical applications.

  • Huan-Jun Lu‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2023‎

Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the most prevalent diseases, and current treatments rely primarily on opioids, which have significant side effects. However, recent developments in pharmaceutical science have identified several new mechanisms for CIBP, including the targeted modification of certain ion channels and receptors. Ion channels are transmembrane proteins, which are situated on biological cell membranes, which facilitate passive transport of inorganic ions across membranes. They are involved in various physiological processes, including transmission of pain signals in the nervous system. In recent years, there has been an increasing interest in the role of ion channels in chronic pain, including CIBP. Therefore, in this review, we summarize the current literature on ion channels, related receptors, and drugs and explore the mechanism of CIBP. Targeting ion channels and regulating their activity might be key to treating pain associated with bone cancer and offer new treatment avenues.


Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species.

  • Jian-Dong Ren‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

The NLRP3 inflammasome, an intracellular multi-protein complex controlling the maturation of cytokine interleukin-1β, plays an important role in lipopolysaccharide (LPS)-induced inflammatory cascades. Recently, the production of mitochondrial reactive oxygen species (mtROS) in macrophages stimulated with LPS has been suggested to act as a trigger during the process of NLRP3 inflammasome activation that can be blocked by some mitochondria-targeted antioxidants. Known as a ROS scavenger, molecular hydrogen (H2) has been shown to possess therapeutic benefit on LPS-induced inflammatory damage in many animal experiments. Due to the unique molecular structure, H2 can easily target the mitochondria, suggesting that H2 is a potential antagonist of mtROS-dependent NLRP3 inflammasome activation. Here we have showed that, in mouse macrophages, H2 exhibited substantial inhibitory activity against LPS-initiated NLRP3 inflammasome activation by scavenging mtROS. Moreover, the elimination of mtROS by H2 resultantly inhibited mtROS-mediated NLRP3 deubiquitination, a non-transcriptional priming signal of NLRP3 in response to the stimulation of LPS. Additionally, the removal of mtROS by H2 reduced the generation of oxidized mitochondrial DNA and consequently decreased its binding to NLRP3, thereby inhibiting the NLRP3 inflammasome activation. Our findings have, for the first time, revealed the novel mechanism underlying the inhibitory effect of molecular hydrogen on LPS-caused NLRP3 inflammasome activation, highlighting the promising application of this new antioxidant in the treatment of LPS-associated inflammatory pathological damage.


Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury.

  • Xiao-Bo Wu‎ et al.
  • Molecular pain‎
  • 2018‎

Chemokines-mediated neuroinflammation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. Chemokine CXCL9, CXCL10, and CXCL11 have been identified as a same subfamily chemokine which bind to CXC chemokine receptor 3 to exert functions. Our recent work found that CXCL10 is upregulated in spinal astrocytes after spinal nerve ligation (SNL) and acts on chemokine receptor CXCR3 on neurons to contribute to central sensitization and neuropathic pain, but less is known about CXCL9 and CXCL11 in the maintenance of neuropathic pain. Here, we report that CXCL9 and CXCL11, same as CXCL10, were increased in spinal astrocytes after SNL. Surprisingly, inhibition of CXCL9 or CXCL11 by spinal injection of shRNA lentivirus did not attenuate SNL-induced neuropathic pain. In addition, intrathecal injection of CXCL9 and CXCL11 did not produce hyperalgesia or allodynia behaviors, and neither of them induced ERK activation, a marker of central sensitization. Whole-cell patch clamp recording on spinal neurons showed that CXCL9 and CXCL11 enhanced both excitatory synaptic transmission and inhibitory synaptic transmission, whereas CXCL10 only produced an increase in excitatory synaptic transmission. These results suggest that, although the expression of CXCL9 and CXCL11 are increased after SNL, they may not contribute to the maintenance of neuropathic pain.


Transcriptome differences in the hypopharyngeal gland between Western Honeybees (Apis mellifera) and Eastern Honeybees (Apis cerana).

  • Hao Liu‎ et al.
  • BMC genomics‎
  • 2014‎

Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager).


Overexpression of miR-758 inhibited proliferation, migration, invasion, and promoted apoptosis of non-small cell lung cancer cells by negatively regulating HMGB.

  • Guo-Hua Zhou‎ et al.
  • Bioscience reports‎
  • 2019‎

Non-small cell lung cancer (NSCLC) is one of the most fatal types of cancer with significant mortality and morbidity worldwide. MicroRNAs (miRs) have been confirmed to have positive functions in NSCLC. In the present study, we try to explore the role of miR-758 in proliferation, migration, invasion, and apoptosis of NSCLC cells by regulating high-mobility group box (HMGB) 3 (HMGB3.) NSCLC and adjacent tissues were collected. Reverse transcription quantitative PCR (RT-qPCR) was employed to detect expression of miR-758 and HMGB3 in NSCLC and adjacent tissues, in BEAS-2B cells and NSCLC cell lines. The targetted relationship between miR-758 and HMGB3 was identified by dual luciferase reporter gene assay. The effects of miR-758 on proliferation, migration, invasion, cell cycle, and apoptosis of A549 cells. MiR-758 expression was lower in NSCLC tissues, which was opposite to HMGB3 expression. The results also demonstrated that miR-758 can target HMGB3. The cells transfected with miR-758 mimic had decreased HMGB3 expression, proliferation, migration, and invasion, with more arrested cells in G1 phase and increased apoptosis. Our results supported that the overexpression of miR-758 inhibits proliferation, migration, and invasion, and promotes apoptosis of NSCLC cells by negative regulating HMGB2. The present study may provide a novel target for NSCLC treatment.


Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury.

  • Wen-Tong Zhang‎ et al.
  • Brain research bulletin‎
  • 2022‎

The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.


Differential expressions of integrin-linked kinase, β-parvin and cofilin 1 in high-fat diet induced prostate cancer progression in a transgenic mouse model.

  • Meng-Bo Hu‎ et al.
  • Oncology letters‎
  • 2018‎

High-fat diet induced obesity was associated with more aggressive prostate cancer. Recent research has demonstrated that integrin-linked kinase (ILK), β-parvin and downstream cofilin 1 jointly affected cancer progression. Meanwhile, these proteins were also involved in energy metabolism. Therefore, the present study was conducted to investigate the potential function of ILK, β-parvin and cofilin 1 in the high-fat diet-induced progression of prostate cancer. Transgenic mice with prostate cancer were employed, fed with different diets and sacrificed at 20 and 28 weeks. Tumor differentiation, extracapsular extension and metastasis were compared between the groups. Expression levels of ILK, β-parvin and cofilin 1 in prostate were evaluated by immunohistochemical analysis and determined by an immunoreactivity score. Public databases were applied for analysis and validation. It was detected that high-fat diet feeding promoted cancer progression in transgenic mice with prostate cancer, with increased expressions of β-parvin (P=0.038) and cofilin 1 (P=0.018). Higher expressions of ILK, β-parvin and cofilin 1 were also associated with poorer cancer differentiation. Additionally, higher mRNA levels of CFL1 were correlated with a worse disease-free survival in patients of certain subgroups from The Cancer Genome Atlas database. Further studies were warranted in discussing the potential roles of ILK, β-parvin and cofilin 1 in high-fat diet feeding induced progression of prostate cancer.


TLR8 in the Trigeminal Ganglion Contributes to the Maintenance of Trigeminal Neuropathic Pain in Mice.

  • Lin-Xia Zhao‎ et al.
  • Neuroscience bulletin‎
  • 2021‎

Trigeminal neuropathic pain (TNP) is a significant health problem but the involved mechanism has not been completely elucidated. Toll-like receptors (TLRs) have recently been demonstrated to be expressed in the dorsal root ganglion and involved in chronic pain. Here, we show that TLR8 was persistently increased in the trigeminal ganglion (TG) neurons in model of TNP induced by partial infraorbital nerve ligation (pIONL). In addition, deletion or knockdown of Tlr8 in the TG attenuated pIONL-induced mechanical allodynia, reduced the activation of ERK and p38-MAPK, and decreased the expression of pro-inflammatory cytokines in the TG. Furthermore, intra-TG injection of the TLR8 agonist VTX-2337 induced pain hypersensitivity. VTX-2337 also increased the intracellular Ca2+ concentration, induced the activation of ERK and p38, and increased the expression of pro-inflammatory cytokines in the TG. These data indicate that TLR8 contributes to the maintenance of TNP through increasing MAPK-mediated neuroinflammation. Targeting TLR8 signaling may be effective for the treatment of TNP.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: