Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

On conduction in a bacterial sodium channel.

  • Simone Furini‎ et al.
  • PLoS computational biology‎
  • 2012‎

Voltage-gated Na⁺-channels are transmembrane proteins that are responsible for the fast depolarizing phase of the action potential in nerve and muscular cells. Selective permeability of Na⁺ over Ca²⁺ or K⁺ ions is essential for the biological function of Na⁺-channels. After the emergence of the first high-resolution structure of a Na⁺-channel, an anionic coordination site was proposed to confer Na⁺ selectivity through partial dehydration of Na⁺ via its direct interaction with conserved glutamate side chains. By combining molecular dynamics simulations and free-energy calculations, a low-energy permeation pathway for Na⁺ ion translocation through the selectivity filter of the recently determined crystal structure of a prokaryotic sodium channel from Arcobacter butzleri is characterised. The picture that emerges is that of a pore preferentially occupied by two ions, which can switch between different configurations by crossing low free-energy barriers. In contrast to K⁺-channels, the movements of the ions appear to be weakly coupled in Na⁺-channels. When the free-energy maps for Na⁺ and K⁺ ions are compared, a selective site is characterised in the narrowest region of the filter, where a hydrated Na⁺ ion, and not a hydrated K⁺ ion, is energetically stable.


Early Steps in C-Type Inactivation of the hERG Potassium Channel.

  • Francesco Pettini‎ et al.
  • Journal of chemical information and modeling‎
  • 2023‎

Fast C-type inactivation confers distinctive functional properties to the hERG potassium channel, and its association to inherited and acquired cardiac arrythmias makes the study of the inactivation mechanism of hERG at the atomic detail of paramount importance. At present, two models have been proposed to describe C-type inactivation in K+-channels. Experimental data and computational work on the bacterial KcsA channel support the hypothesis that C-type inactivation results from a closure of the selectivity filter that sterically impedes ion conduction. Alternatively, recent experimental structures of a mutated Shaker channel revealed a widening of the extracellular portion of the selectivity filter, which might diminish conductance by interfering with the mechanism of ion permeation. Here, we performed molecular dynamics simulations of the wild-type hERG, a non-inactivating mutant (hERG-N629D), and a mutant that inactivates faster than the wild-type channel (hERG-F627Y) to find out which and if any of the two reported C-type inactivation mechanisms applies to hERG. Closure events of the selectivity filter were not observed in any of the simulated trajectories but instead, the extracellular section of the selectivity filter deviated from the canonical conductive structure of potassium channels. The degree of widening of the potassium binding sites at the extracellular entrance of the channel was directly related to the degree of inactivation with hERG-F627Y > wild-type hERG > hERG-N629D. These findings support the hypothesis that C-type inactivation in hERG entails a widening of the extracellular entrance of the channel rather than a closure of the selectivity filter.


A Potential Route of Capsaicin to Its Binding Site in the TRPV1 Ion Channel.

  • Carmen Domene‎ et al.
  • Journal of chemical information and modeling‎
  • 2022‎

Transient receptor potential (TRP) ion channels are important pharmacological targets because of their role in the perception of pain, and so, understanding their chemical regulation is essential for the development of analgesic drugs. Among the currently known TRP channel chemical agonists, capsaicin, the active compound of chili pepper, is probably the most exhaustively studied. The availability of the three-dimensional structure of the vanilloid receptor 1 (TRPV1) has fueled computational studies revealing the molecular details of capsaicin binding modes. Although this is a significant step, a comprehensible binding mechanism or pathway is invaluable for targeting TRP channels in modern pharmacology. In the present work, free-energy and enhanced sampling techniques have been used to explore a possible membrane-mediated pathway for capsaicin to enter the TRPV1 binding pocket where capsaicin accesses the protein starting at the extracellular milieu through the outer leaflet and into its binding site in the protein. The main states visited along this route have been characterized and include (i) a bound state in agreement with the binding mode "head-down, tail-up" and (ii) an alternative state corresponding to a "head-up, tail-down" binding mode. In agreement with previous reports, binding is mediated by both hydrogen bonds and van der Waals interactions, and residue Y511 is crucial for stabilizing the bound state and during the binding process. Together, these results provide a foundation to further understand TRPV channels, and they could be used to guide therapeutic design of selective inhibitors potentially leading to novel avenues for pharmacological applications targeting the TRPV1 channel.


Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels.

  • Subhrangsu Roy‎ et al.
  • European journal of medicinal chemistry‎
  • 2014‎

We have designed, synthesised and characterised the effects of a number of novel anthraquinone derivatives and assessed their effects on large conductance, Ca(2+) activated K(+) (BK) channels recorded from rabbit bladder smooth muscle cells using the excised, inside/out configuration of the patch clamp technique. These compounds are members of the GoSlo-SR family of compounds, which potently open BK channels and shift the voltage required for half maximal activation (V1/2) negatively. The efficacy of the anilinoanthraquinone derivatives was enhanced when the size of ring D was increased, since the cyclopentane and cyclohexane derivatives shifted the V1/2, by -24 ± 6 mV and -54 ± 8 mV, respectively, whereas the cycloheptane and cyclooctane derivatives shifted the V1/2 by -61 ± 6 mV and -106 ± 6 mV. To examine if a combination of hydrophobicity and steric bulking of this region further enhanced their ability to open BK channels, we synthesised a number of naphthalene and tetrahydro-naphthalene derivatives. The tetrahydro-2-naphthalene derivative GoSlo-SR-5-69 was the most potent and efficacious of the series since it was able to shift the activation V1/2 by greater than -100 mV when applied at a concentration of 1 μM and had an EC50 of 251 nM, making it one of the most potent and efficacious BK channel openers synthesised to date.


DNA-recognition process described by MD simulations of the lactose repressor protein on a specific and a non-specific DNA sequence.

  • Simone Furini‎ et al.
  • Nucleic acids research‎
  • 2013‎

The lactose repressor protein may bind DNA in two possible configurations: a specific one, if the DNA sequence corresponds to a binding site, and a non-specific one otherwise. To find its target sequences, the lactose repressor first binds non-specifically to DNA, and subsequently, it rapidly searches for a binding site. Atomic structures of non-specific and specific complexes are available from crystallographic and nuclear magnetic resonance experiments. However, what remains unknown is a detailed description of the steps that transform the non-specific complex into the specific one. Here, how the protein first recognizes its binding site has been studied using molecular dynamics simulations. The picture that emerges is that of a protein that is as mobile when interacting with non-specific DNA sequences as when free in solution. This high degree of mobility allows the protein to rapidly sample different DNA sequences. In contrast, when the protein encounters a binding site, the configuration ensemble collapses, and the protein sliding movements along the DNA sequence become scarce. The binding energies in the specific and non-specific complexes were analysed using the Molecular Mechanics Poisson Boltzmann Surface Area approach. These results represent a first step towards a throughout characterization of the DNA-recognition process.


Dynamics, energetics, and selectivity of the low-K+ KcsA channel structure.

  • Carmen Domene‎ et al.
  • Journal of molecular biology‎
  • 2009‎

Potassium channels are a diverse family of integral membrane proteins through which K(+) can pass selectively. There is ongoing debate about the nature of conformational changes associated with the opening/closing and conductive/nonconductive states of potassium channels. The channels partly exert their function by varying their conductance through a mechanism known as C-type inactivation. Shortly after the activation of K(+) channels, their selectivity filter stops conducting ions at a rate that depends on various stimuli. The molecular mechanism of C-type inactivation has not been fully understood yet. However, the X-ray structure of the KcsA channel obtained in the presence of low K(+) concentration is thought to be representative of a K(+) channel in the C-type inactivated state. Here, extensive, fully atomistic molecular dynamics and free-energy simulations of the low-K(+) KcsA structure in an explicit lipid bilayer are performed to evaluate the stability of this structure and the selectivity of its binding sites. We find that the low-K(+) KcsA structure is stable on the timescale of the molecular dynamics simulations performed, and that ions preferably remain in S1 and S4. In the absence of ions, the selectivity filter evolves toward an asymmetric architecture, as already observed in other computations of the high-K(+) structure of KcsA and KirBac. The low-K(+) KcsA structure is not permeable by Na(+), K(+), or Rb(+), and the selectivity of its binding sites is different from that of the high-K(+) structure.


Potassium channel, ions, and water: simulation studies based on the high resolution X-ray structure of KcsA.

  • Carmen Domene‎ et al.
  • Biophysical journal‎
  • 2003‎

Interactions of Na(+), K(+), Rb(+), and Cs(+) ions within the selectivity filter of a potassium channel have been investigated via multiple molecular dynamics simulations (total simulation time, 48 ns) based on the high resolution structure of KcsA, embedded in a phospholipid bilayer. As in simulations based on a lower resolution structure of KcsA, concerted motions of ions and water within the filter are seen. Despite the use of a higher resolution structure and the inclusion of four buried water molecules thought to stabilize the filter, this region exhibits a significant degree of flexibility. In particular, pronounced distortion of filter occurs if no ions are present within it. The two most readily permeant ions, K(+) and Rb(+), are similar in their interactions with the selectivity filter. In contrast, Na(+) ions tend to distort the filter by binding to a ring of four carbonyl oxygens. The larger Cs(+) ions result in a small degree of expansion of the filter relative to the x-ray structure. Cs(+) ions also appear to interact differently with the gate region of the channel, showing some tendency to bind within a predominantly hydrophobic pocket. The four water molecules buried between the back of the selectivity filter and the remainder of the protein show comparable mobility to the surrounding protein and do not exchange with water molecules within the filter or the central cavity. A preliminary comparison of the use of particle mesh Ewald versus cutoff protocols for the treatment of long-range electrostatics suggests some difference in the kinetics of ion translocation within the filter.


Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases.

  • Rasheduzzaman Chowdhury‎ et al.
  • Nature communications‎
  • 2016‎

The response to hypoxia in animals involves the expression of multiple genes regulated by the αβ-hypoxia-inducible transcription factors (HIFs). The hypoxia-sensing mechanism involves oxygen limited hydroxylation of prolyl residues in the N- and C-terminal oxygen-dependent degradation domains (NODD and CODD) of HIFα isoforms, as catalysed by prolyl hydroxylases (PHD 1-3). Prolyl hydroxylation promotes binding of HIFα to the von Hippel-Lindau protein (VHL)-elongin B/C complex, thus signalling for proteosomal degradation of HIFα. We reveal that certain PHD2 variants linked to familial erythrocytosis and cancer are highly selective for CODD or NODD. Crystalline and solution state studies coupled to kinetic and cellular analyses reveal how wild-type and variant PHDs achieve ODD selectivity via different dynamic interactions involving loop and C-terminal regions. The results inform on how HIF target gene selectivity is achieved and will be of use in developing selective PHD inhibitors.


Redox regulation of KV7 channels through EF3 hand of calmodulin.

  • Eider Nuñez‎ et al.
  • eLife‎
  • 2023‎

Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.


Permeation and dynamics of an open-activated TRPV1 channel.

  • Leonardo Darré‎ et al.
  • Journal of molecular biology‎
  • 2015‎

Transient receptor potential (TRP) ion channels constitute a large and diverse protein family, found in yeast and widespread in the animal kingdom. TRP channels work as sensors for a wide range of cellular and environmental signals. Understanding how these channels respond to physical and chemical stimuli has been hindered by the limited structural information available until now. The three-dimensional structure of the vanilloid receptor 1 (TRPV1) was recently determined by single particle electron cryo-microscopy, offering for the first time the opportunity to explore ionic conduction in TRP channels at atomic detail. In this study, we present molecular dynamics simulations of the open-activated pore domain of TRPV1 in the presence of three cationic species: Na(+), Ca(2+) and K(+). The dynamics of these ions while interacting with the channel pore allowed us to rationalize their permeation mechanism in terms of a pathway involving three binding sites at the intracellular cavity, as well as the extracellular and intracellular entrance of the selectivity filter. Furthermore, conformational analysis of the pore in the presence of these ions reveals specific ion-mediated structural changes in the selectivity filter, which influences the permeability properties of the TRPV1 channel.


Anionic phospholipid interactions with the potassium channel KcsA: simulation studies.

  • Sundeep S Deol‎ et al.
  • Biophysical journal‎
  • 2006‎

Molecular dynamics (MD) simulations have been used to unmask details of specific interactions of anionic phospholipids with intersubunit binding sites on the surface of the bacterial potassium channel KcsA. Crystallographic data on a diacyl glycerol fragment at this site were used to model phosphatidylethanolamine (PE), or phosphatidylglycerol (PG), or phosphatidic acid (PA) at the intersubunit binding sites. Each of these models of a KcsA-lipid complex was embedded in phosphatidyl choline bilayer and explored in a 20 ns MD simulation. H-bond analysis revealed that in terms of lipid-protein interactions PA > PG >> PE and revealed how anionic lipids (PG and PA) bind to a site provided by two key arginine residues (R(64) and R(89)) at the interface between adjacent subunits. A 27 ns simulation was performed in which KcsA (without any lipids initially modeled at the R(64)/R(89) sites) was embedded in a PE/PG bilayer. There was a progressive specific increase over the course of the simulation in the number of H-bonds of PG with KcsA. Furthermore, two specific PG binding events at R(64)/R(89) sites were observed. The phosphate oxygen atoms of bound PG formed H-bonds to the guanidinium group of R(89), whereas the terminal glycerol H-bonded to R(64). Overall, this study suggests that simulations can help identify and characterize sites for specific lipid interactions on a membrane protein surface.


Influence of Cholesterol and Its Stereoisomers on Members of the Serotonin Receptor Family.

  • Victoria Oakes‎ et al.
  • Journal of molecular biology‎
  • 2019‎

Despite the ubiquity of cholesterol within the cell membrane, the mechanism by which it influences embedded proteins remains elusive. Numerous G-protein coupled receptors exhibit dramatic responses to membrane cholesterol with regard to the ligand-binding affinity and functional properties, including the 5-HT receptor family. Here, we use over 25 μs of unbiased atomistic molecular dynamics simulations to identify cholesterol interaction sites in the 5-HT1B and 5-HT2B receptors and evaluate their impact on receptor structure. Susceptibility to membrane cholesterol is shown to be subtype dependent and determined by the quality of interactions between the extracellular loops. Charged residues are essential for maintaining the arrangement of the extracellular surface in 5-HT2B; in the absence of such interactions, the extracellular surface of the 5-HT1B is malleable, populating a number of distinct conformations. Elevated cholesterol density near transmembrane helix 4 is considered to be conducive to the conformation of extracellular loop 2. Occupation of this site is also shown to be stereospecific, illustrated by differential behavior of nat-cholesterol isomers, ent- and epi-cholesterol. In simulations containing the endogenous agonist, serotonin, cholesterol binding at transmembrane helix 4 biases bound serotonin molecules toward an unexpected binding mode in the extended binding pocket. The results highlight the capability of membrane cholesterol to influence the mobility of the extracellular surface in the 5-HT1 receptor family and manipulate the architecture of the extracellular ligand-binding pocket.


Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.

  • Christian Jorgensen‎ et al.
  • Biophysical journal‎
  • 2016‎

Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684.


Lipid-protein interactions of integral membrane proteins: a comparative simulation study.

  • Sundeep S Deol‎ et al.
  • Biophysical journal‎
  • 2004‎

The interactions between membrane proteins and their lipid bilayer environment play important roles in the stability and function of such proteins. Extended (15-20 ns) molecular dynamics simulations have been used to explore the interactions of two membrane proteins with phosphatidylcholine bilayers. One protein (KcsA) is an alpha-helix bundle and embedded in a palmitoyl oleoyl phosphatidylcholine bilayer; the other (OmpA) is a beta-barrel outer-membrane protein and is in a dimyristoyl phosphatidylcholine bilayer. The simulations enable analysis in detail of a number of aspects of lipid-protein interactions. In particular, the interactions of aromatic amphipathic side chains (i.e., Trp, Tyr) with lipid headgroups, and "snorkeling" interactions of basic side chains (i.e., Lys, Arg) with phosphate groups are explored. Analysis of the number of contacts and of H-bonds reveal fluctuations on an approximately 1- to 5-ns timescale. There are two clear bands of interacting residues on the surface of KcsA, whereas there are three such bands on OmpA. A large number of Arg-phosphate interactions are seen for KcsA; for OmpA, the number of basic-phosphate interactions is smaller and shows more marked fluctuations with respect to time. Both classes of interaction occur in clearly defined interfacial regions of width approximately 1 nm. Analysis of lateral diffusion of lipid molecules reveals that "boundary" lipid molecules diffuse at about half the rate of bulk lipid. Overall, these simulations present a dynamic picture of lipid-protein interactions: there are a number of more specific interactions but even these fluctuate on an approximately 1- to 5-ns timescale.


Filter flexibility and distortion in a bacterial inward rectifier K+ channel: simulation studies of KirBac1.1.

  • Carmen Domene‎ et al.
  • Biophysical journal‎
  • 2004‎

The bacterial channel KirBac1.1 provides a structural homolog of mammalian inward rectifier potassium (Kir) channels. The conformational dynamics of the selectivity filter of Kir channels are of some interest in the context of possible permeation and gating mechanisms for this channel. Molecular dynamics simulations of KirBac have been performed on a 10-ns timescale, i.e., comparable to that of ion permeation. The results of five simulations (total simulation time 50 ns) based on three different initial ion configurations and two different model membranes are reported. These simulation data provide evidence for limited (<0.1 nm) filter flexibility during the concerted motion of ions and water molecules within the filter, such local changes in conformation occurring on an approximately 1-ns timescale. In the absence of K(+) ions, the KirBac selectivity filter undergoes more substantial distortions. These resemble those seen in comparable simulations of other channels (e.g., KcsA and KcsA-based homology models) and are likely to lead to functional closure of the channel. This suggests filter distortions may provide a mechanism of K-channel gating in addition to changes in the hydrophobic gate formed at the intracellular crossing point of the M2 helices. The simulation data also provide evidence for interactions of the "slide" (pre-M1) helix of KirBac with phospholipid headgroups.


Selectivity and permeation of alkali metal ions in K+-channels.

  • Simone Furini‎ et al.
  • Journal of molecular biology‎
  • 2011‎

Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+).


Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments.

  • Edurne Rujas‎ et al.
  • Cell reports‎
  • 2020‎

The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes.


Membrane Phase-Dependent Occlusion of Intramolecular GLUT1 Cavities Demonstrated by Simulations.

  • Javier Iglesias-Fernandez‎ et al.
  • Biophysical journal‎
  • 2017‎

Experimental evidence has shown a close correlation between the composition and physical state of the membrane bilayer and glucose transport activity via the glucose transporter GLUT1. Cooling alters the membrane lipids from the fluid to gel phase, and also causes a large decrease in the net glucose transport rate. The goal of this study is to investigate how the physical phase of the membrane alters glucose transporter structural dynamics using molecular-dynamics simulations. Simulations from an initial fluid to gel phase reduce the size of the cavities and tunnels traversing the protein and connecting the external regions of the transporter and the central binding site. These effects can be ascribed solely to membrane structural changes since in silico cooling of the membrane alone, while maintaining the higher protein temperature, shows protein structural and dynamic changes very similar to those observed with uniform cooling. These results demonstrate that the protein structure is sensitive to the membrane phase, and have implications for how transmembrane protein structures respond to their physical environment.


An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species.

  • Manuel David Peris-Díaz‎ et al.
  • Journal of the American Chemical Society‎
  • 2021‎

Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.


An epilepsy-causing mutation leads to co-translational misfolding of the Kv7.2 channel.

  • Janire Urrutia‎ et al.
  • BMC biology‎
  • 2021‎

The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: