Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Galectin-3 as a marker and potential therapeutic target in breast cancer.

  • Hao Zhang‎ et al.
  • PloS one‎
  • 2014‎

Galectin-3 has a relatively high level of expression in triple-negative breast cancers and is a potential marker for this disease. However, the clinical and prognostic implications of galectin-3 expression in breast cancer remain unclear. We examined mastectomy specimens from 1086 breast cancer cases and matching, adjacent non-cancerous tissues using immunohistochemistry. Overall, triple-negative breast cancers expressed galectin-3 more strongly than did other breast cancers types (63.59% vs 21.36%, P = 0.001). Galectin-3 expression was not found to be an independent prognostic factor for breast cancer by Cox regression analysis, but was associated with chemotherapeutic resistance. Apoptosis was only weakly induced by arsenic trioxide (ATO) treatment in galectin-3-positive breast cancer cells (MDA-MB-231 and MCF-7), although ATO treatment up-regulated galectin-3 expression. Knockdown of galectin-3 in MDA-MB-231 cells sensitized them to killing by ATO. These findings support a possible role for galectin-3 as a marker for triple-negative breast cancer progression and as a therapeutic target in combination with ATO treatment, although the mechanisms that underlie this synergy require further investigation.


XAB2 functions in mitotic cell cycle progression via transcriptional regulation of CENPE.

  • Shuai Hou‎ et al.
  • Cell death & disease‎
  • 2016‎

Xeroderma pigmentosum group A (XPA)-binding protein 2 (XAB2) is a multi-functional protein that plays critical role in processes including transcription, transcription-coupled DNA repair, pre-mRNA splicing, homologous recombination and mRNA export. Microarray analysis on gene expression in XAB2 knockdown cells reveals that many genes with significant change in expression function in mitotic cell cycle regulation. Fluorescence-activated cell scanner analysis confirmed XAB2 depletion led to cell arrest in G2/M phase, mostly at prophase or prometaphase. Live cell imaging further disclosed that XAB2 knockdown induced severe mitotic defects including chromosome misalignment and defects in segregation, leading to mitotic arrest, mitotic catastrophe and subsequent cell death. Among top genes down-regulated by XAB2 depletion is mitotic motor protein centrosome-associated protein E (CENPE). Knockdown CENPE showed similar phenotypes to loss of XAB2, but CENPE knockdown followed by XAB2 depletion did not further enhance cell cycle arrest. Luciferase assay on CENPE promoter showed that overexpression of XAB2 increased luciferase activity, whereas XAB2 depletion resulted in striking reduction of luciferase activity. Further mapping revealed a region in CENPE promoter that is required for the transcriptional regulation by XAB2. Moreover, ChIP assay showed that XAB2 interacted with CENPE promoter. Together, these results support a novel function of XAB2 in mitotic cell cycle regulation, which is partially mediated by transcription regulation on CENPE.


Clinical implications of cancer stem cell-like side population cells in human laryngeal cancer.

  • Dan Yu‎ et al.
  • Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine‎
  • 2013‎

In this study, we try to detect and isolate the cancer stem cell-like side population cells (SP) from the laryngeal carcinoma cell line and primary laryngeal carcinoma and explore the clinical implications of SP cells in laryngeal carcinoma. The SP cells and non-side population cells (NSP) cells were sorted by Hoechst 33342 through FACS. The proliferation capacity, invasion ability, migration ability, and tumorigenic activity of the SP cells were evaluated. In addition, the association between the SP cells ratio and the prognostic factors of laryngeal cancer was analyzed. As a result, the percentage of the SP cells in Hep-2 cells was 5.1%. The SP cells depicted float colonies, but the NSP cells failed to generate the typical cell spheres. The clone formation ratios were 47.47 ± 10.20% vs. 4.98 ± 1.41% in the flat plates and 46.82 ± 5.67% vs. 12.53 ± 3.51% in the soft agar for SP and NSP cells (P = 0.01 and 0.01). The SP cells depicted a higher migrating potency than the NSP cells in both the transwell assay and scarification test (all P < 0.05). The matrigel invasion assay showed that the artificial basement membrane penetration rate of SP cells was 39.04 ± 4.78%, which was higher than 25.16 ± 4.63% of the NSP cells (P < 0.05). Only 10(3) SP cells were able to form tumors in mice, whereas 10(4) NSP cells failed to form tumors. The SP cells were correlated with the differentiation, lymph node metastasis, and clinical stage of the laryngeal cancers. In conclusion, SP cells may be a potential prognostic factor of laryngeal cancer.


The effect of elemene on lung adenocarcinoma A549 cell radiosensitivity and elucidation of its mechanism.

  • Kun Zou‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2015‎

To investigate the effect of elemene on the radiosensitivity of A549 cells and its possible molecular mechanism.


CMTM6 overexpression confers trastuzumab resistance in HER2-positive breast cancer.

  • Fei Xing‎ et al.
  • Molecular cancer‎
  • 2023‎

Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is characterized by invasive growth, rapid metastasis and chemoresistance. Trastuzumab is an effective treatment for HER2+ breast cancer; however, trastuzumab resistance leads to cancer relapse and metastasis. CKLF-like MARVEL transmembrane domain-containing 6 (CMTM6) has been considered as a new immune checkpoint for tumor-induced immunosuppression. The role of CMTM6 in trastuzumab resistance remains unknown. Here, we uncover a role of CMTM6 in trastuzumab-resistant HER2+ breast cancer. CMTM6 expression was upregulated in trastuzumab-resistant HER2+ breast cancer cell. Patients with high CMTM6 expressing HER2+ breast cancer had worse overall and progression-free survival than those with low CMTM6 expression. In vitro, CMTM6 knockdown inhibited the proliferation and migration of HER2+ breast cancer cells, and promoted their apoptosis, while CMTM6 overexpression reversed these effects. CMTM6 and HER2 proteins were co-localized on the surface of breast cancer cells, and CMTM6 silencing reduced HER2 protein levels in breast cancer cells. Co-immunoprecipitation revealed that CMTM6 directly interacted with HER2 in HER2+ breast cancer cells, and CMTM6 overexpression inhibited HER2 ubiquitination. Collectively, these findings highlight that CMTM6 stabilizes HER2 protein, contributing to trastuzumab resistance and implicate CMTM6 as a potential prognostic marker and therapeutic target for overcoming trastuzumab resistance in HER2+ breast cancer.


KCNJ15 deficiency promotes drug resistance via affecting the function of lysosomes.

  • Xinbo Qiao‎ et al.
  • Asian journal of pharmaceutical sciences‎
  • 2023‎

The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients. V-ATPase, an ATP-driven proton pump positioned at lysosomal surfaces, is responsible for maintaining the stability of lysosome. Herein, we reported that the potassium voltage-gated channel subfamily J member 15 (KCNJ15) protein, which may bind to V-ATPase, can regulate the function of lysosome. The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy. The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase, contributing to the amelioration of drug resistance. Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading, advanced stages, more metastases of lymph nodes, and shorter disease free survival of patients with breast cancer. KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy. Moreover, we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes. In conclusion, KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer, which might guide the choice of therapeutic strategies.


KK-LC-1 as a therapeutic target to eliminate ALDH+ stem cells in triple negative breast cancer.

  • Jiawen Bu‎ et al.
  • Nature communications‎
  • 2023‎

Failure to achieve complete elimination of triple negative breast cancer (TNBC) stem cells after adjuvant therapy is associated with poor outcomes. Aldehyde dehydrogenase 1 (ALDH1) is a marker of breast cancer stem cells (BCSCs), and its enzymatic activity regulates tumor stemness. Identifying upstream targets to control ALDH+ cells may facilitate TNBC tumor suppression. Here, we show that KK-LC-1 determines the stemness of TNBC ALDH+ cells via binding with FAT1 and subsequently promoting its ubiquitination and degradation. This compromises the Hippo pathway and leads to nuclear translocation of YAP1 and ALDH1A1 transcription. These findings identify the KK-LC-1-FAT1-Hippo-ALDH1A1 pathway in TNBC ALDH+ cells as a therapeutic target. To reverse the malignancy due to KK-LC-1 expression, we employ a computational approach and discover Z839878730 (Z8) as an small-molecule inhibitor which may disrupt KK-LC-1 and FAT1 binding. We demonstrate that Z8 suppresses TNBC tumor growth via a mechanism that reactivates the Hippo pathway and decreases TNBC ALDH+ cell stemness and viability.


FSIP2 can serve as a predictive biomarker for Clear Cell Renal Cell Carcinoma prognosis.

  • Yixiao Zhang‎ et al.
  • International journal of medical sciences‎
  • 2020‎

Purpose: To characterize the role of fibrous sheath interacting protein 2 (FSIP2) in the survival outcomes and prognosis of clear cell renal cell carcinoma (ccRCC) patients, which is currently not well understood. Methods: The Oncomine and CCLE databases were used to investigate the differential expression of FSIP2 in ccRCC versus other cancer types. Levels of FSIP2 in 85 ccRCC patients were assessed by immunohistochemical analysis; clinicopathological features related to FSIP2 expression were examined in these patients finally, disease-free survival and overall survival were estimated by survival analysis to elucidate the impact of FSIP2 expression in ccRCC patients. Results: Analysis using the Oncomine database revealed significant upregulation of the FSIP2 gene in papillary RCC, compared to that in normal tissues. Additionally, FSIP2 expression was found to be significantly associated with abnormal platelet count, positive distant metastasis, and death as the incidence of distant metastasis and death were higher in patients with FSIP2 expression compared to those without FSIP2 expression. Survival analysis revealed that FSIP2 expression was significantly related to shorter disease-free survival and overall survival. Meanwhile, patients with FSIP2 expression had worse prognosis than those without FSIP2 expression. Conclusions: FSIP2 expression is associated with poor survival outcomes and poor prognosis in ccRCC patients. FSIP2 may therefore serve as a potential predictive biomarker of ccRCC prognosis.


Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2+HR+ breast cancer.

  • Jiawen Bu‎ et al.
  • eLife‎
  • 2023‎

Recent evidences from clinical trials (NCT04486911) revealed that the combination of pyrotinib, letrozole, and dalpiciclib exerted optimistic therapeutic effect in treating HER2+HR+ breast cancer; however, the underlying molecular mechanism remained elusive. Through the drug sensitivity test, the drug combination efficacy of pyrotinib, tamoxifen, and dalpiciclib to BT474 cells was tested. The underlying molecular mechanisms were investigated using immunofluorescence, Western blot analysis, immunohistochemical staining, and cell cycle analysis. Potential risk factor that may indicate the responsiveness to drug treatment in HER2+/HR+ breast cancer was identified using RNA-sequence and evaluated using immunohistochemical staining and in vivo drug susceptibility test. We found that pyrotinib combined with dalpiciclib exerted better cytotoxic efficacy than pyrotinib combined with tamoxifen in BT474 cells. Degradation of HER2 could enhance ER nuclear transportation, activating ER signaling pathway in BT474 cells, whereas dalpiciclib could partially abrogate this process. This may be the underlying mechanism by which combination of pyrotinib, tamoxifen, and dalpiciclib exerted best cytotoxic effect. Furthermore, CALML5 was revealed to be a risk factor in the treatment of HER2+/HR+ breast cancer and the usage of dalpiciclib might overcome the drug resistance to pyrotinib + tamoxifen due to CALML5 expression. Our study provided evidence that the usage of dalpiciclib in the treatment of HER2+/HR+ breast cancer could partially abrogate the estrogen signaling pathway activation caused by anti-HER2 therapy and revealed that CALML5 could serve as a risk factor in the treatment of HER2+/HR+ breast cancer.


Fibrous sheath interacting protein 1 overexpression is associated with unfavorable prognosis in bladder cancer: a potential therapeutic target.

  • Ming Sun‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

The study aimed to investigate the clinical significance of fibrous sheath interacting protein 1 (FSIP1) in bladder cancer, and its potential relevance to the survival of patients with bladder cancer. A total of 225 surgical excised-bladder cancer tissues were collected from the patients with the follow-up data >5 years. The FSIP1 expressions were assayed using immunohistochemistry. The messenger RNA (mRNA) and/or protein levels of FSIP1 in fresh bladder tumor tissues as well as bladder cancer cell lines were measured by quantitative real-time polymerase chain reaction (PCR) and Western blotting analysis. The correlation of FSIP1 expression with clinicopathological parameters was also evaluated. Western blotting analysis revealed that FSIP1 protein was detected in 94.1% (16/17) of bladder tumor specimens and in all three bladder cancer cell lines (5637, BIU-87, and T24 in particular), with significantly higher expression than those of their controls. Quantitative real-time PCR demonstrated an increased FSIP1 mRNA expression level in bladder cancer tissues than in normal adjacent tissues (P=0.012). FSIP1 overexpression showed good correlation with tumor stage and lymph node metastasis (P=0.027 and 0.000, respectively). Positive FSIP1 expression was independently associated with an unfavorable overall and disease-free survival by multivariate Cox regression (P=0.037 and 0.019, respectively). FSIP1 overexpression is associated with unfavorable prognosis in patients with bladder cancer. Thus, FSIP1 represents a potential therapeutic or predictive target for bladder cancer.


Knockdown of fibrous sheath interacting protein 1 expression reduces bladder urothelial carcinoma cell proliferation and induces apoptosis via inhibition of the PI3K/AKT pathway.

  • Ming Sun‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

FSIP1 plays a vital role in tumorigenesis and cancer progression. In bladder cancer, FSIP1 overexpression was associated with poor prognosis of bladder urothelial carcinoma. In this study, we investigated whether FSIP1 is essential in the progression of bladder cancer and the mechanism by which it mediates this effect.


High throughput screening of cytokines, chemokines and matrix metalloproteinases in wound fluid induced by mammary surgery.

  • Dan Wang‎ et al.
  • Oncotarget‎
  • 2015‎

To clarify the composition of wound fluid (WF) and investigate the impact of WF on breast cancer cell lines.


Association of human breast cancer CD44-/CD24- cells with delayed distant metastasis.

  • Xinbo Qiao‎ et al.
  • eLife‎
  • 2021‎

Tumor metastasis remains the main cause of breast cancer-related deaths, especially delayed breast cancer distant metastasis. The current study assessed the frequency of CD44-/CD24- breast cancer cells in 576 tissue specimens for associations with clinicopathological features and metastasis and investigated the underlying molecular mechanisms. The results indicated that higher frequency (≥19.5%) of CD44-/CD24- cells was associated with delayed postoperative breast cancer metastasis. Furthermore, CD44-/CD24-triple negative breast cancer (TNBC) cells spontaneously converted into CD44+/CD24-cancer stem cells (CSCs) with properties similar to CD44+/CD24-CSCs from primary human breast cancer cells and parental TNBC cells in terms of stemness marker expression, self-renewal, differentiation, tumorigenicity, and lung metastasis in vitro and in NOD/SCID mice. RNA sequencing identified several differentially expressed genes (DEGs) in newly converted CSCs and RHBDL2, one of the DEGs, expression was upregulated. More importantly, RHBDL2 silencing inhibited the YAP1/USP31/NF-κB signaling and attenuated spontaneous CD44-/CD24- cell conversion into CSCs and their mammosphere formation. These findings suggest that the frequency of CD44-/CD24- tumor cells and RHBDL2 may be valuable for prognosis of delayed breast cancer metastasis, particularly for TNBC.


DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance.

  • Lina Wang‎ et al.
  • Nature communications‎
  • 2022‎

DNA is well-documented to stimulate immune response. However, the nature of the DNA to activate immune surveillance is less understood. Here, we show that the activation of cyclic GMP-AMP synthase (cGAS) depends on DNA mechanical flexibility, which is controlled by DNA-sequence, -damage and -length. Consistently, DNA-sequence was shown to control cGAS activation. Structural analyses revealed that a conserved cGAS residue (mouse R222 or human R236) contributed to the DNA-flexibility detection. And the residue substitution neutralised the flexibility-controlled DNA-potential to activate cGAS, and relaxed the DNA-length specificity of cGAS. Moreover, low dose radiation was shown to mount cGAS-mediated acute immune surveillance (AIS) via repairable (reusable) DNAs in hrs. Loss of cGAS-mediated AIS decreased the regression of local and abscopal tumours in the context of focal radiation and immune checkpoint blockade. Our results build a direct link between immunosurveillance and DNA mechanical feature.


BAG2 Promotes Proliferation and Metastasis of Gastric Cancer via ERK1/2 Signaling and Partially Regulated by miR186.

  • Lisha Sun‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Bcl2-associated athanogene (BAG)2 as a co-chaperone has been demonstrated to be involved in tumor growth and metastasis, but its biological function in gastric cancer remains unknown. Here, we reported that BAG2 was highly expressed in gastric cancer cell lines and tissues, indicating poor prognosis. High expression of BAG2 was significantly associated with T stage and differentiation level of gastric cancer (P < 0.001). Functional experiments revealed that BAG2 knockdown in gastric cancer cells inhibited the proliferation, invasion and migration of cells through AKT/mTOR and extracellular regulated kinase (ERK) pathways. Proteomic analysis identified that BAG2 may be involved in the regulation of mitogen-activated protein kinase (MAPK) pathway. In addition, immunoprecipitation showed that BAG2 could bind to ERK1/2. Luciferase reporter assay and Western blot verified that BAG2 was down-regulated by miR186. Taken together, our findings may reveal the basic function of BAG2 and uncover a potential therapeutic target for gastric cancer.


Downregulation of GLYAT Facilitates Tumor Growth and Metastasis and Poor Clinical Outcomes Through the PI3K/AKT/Snail Pathway in Human Breast Cancer.

  • Xin Tian‎ et al.
  • Frontiers in oncology‎
  • 2021‎

The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients.


An herbal drug combination identified by knowledge graph alleviates the clinical symptoms of plasma cell mastitis patients: A nonrandomized controlled trial.

  • Caigang Liu‎ et al.
  • eLife‎
  • 2023‎

Plasma cell mastitis (PCM) is a nonbacterial breast inflammation with severe and intense clinical manifestation, yet treatment methods for PCM are still rather limited. Although the mechanism of PCM remains unclear, mounting evidence suggests that the dysregulation of immune system is closely associated with the pathogenesis of PCM. Drug combinations or combination therapy could exert improved efficacy and reduced toxicity by hitting multiple discrete cellular targets.


Binding blockade between TLN1 and integrin β1 represses triple-negative breast cancer.

  • Yixiao Zhang‎ et al.
  • eLife‎
  • 2022‎

Integrin family are known as key gears in focal adhesion for triple-negative breast cancer (TNBC) metastasis. However, the integrin independent factor TLN1 remains vague in TNBC.


HCK can serve as novel prognostic biomarker and therapeutic target for Breast Cancer patients.

  • Xudong Zhu‎ et al.
  • International journal of medical sciences‎
  • 2020‎

The role of HCK expression in the prognosis of breast cancer patients is unclear. Thus, this study aimed to explore the clinical implications of HCK expression in breast cancer. We assessed HCK expression and genetic variations in breast cancer using Oncomine, GEPIA, UALCAN, and cBioPortal databases. Then, immunochemistry was used to analyze HCK expression in breast cancer specimens, non-cancer tissues and metastatic cancer tissues. Consequently, we evaluated the effect of HCK expression on survival outcomes set as disease-free survival (DFS) and overall survival (OS). Finally, STRING, Coexpedia, and TISIDB database were explored to identify the molecular functions and regulation pathways of HCK. We found that breast cancer tissues have more HCK mRNA transcripts than non-cancer tissues. Patients with HCK expression had significantly shorter DFS and OS. The ratio of HCK expression was higher in cancer tissues than in non-cancer tissues. These results from STRING database, FunRich software, and TISIDB database showed that HCK was involved in mediating multiple biological processes including immune response-regulating signaling pathway, cell growth and maintenance through multiple signaling pathways including epithelial to mesenchymal transition, PI3K/AKT signaling pathway, and focal adhesion. Overall, HCK may be an oncogene in the development of breast cancer and thus may as a novel biomarker and therapeutic target for breast cancer.


Vascular endothelial growth factor receptor-1 activation promotes migration and invasion of breast cancer cells through epithelial-mesenchymal transition.

  • Qian Ning‎ et al.
  • PloS one‎
  • 2013‎

Vascular endothelial growth factor receptor-1 (VEGFR-1 or Flt-1), a tyrosine kinase receptor, is highly expressed in breast cancer tissues, but near absent in normal breast tissue. While VEGFR-1 expression is associated with poor prognosis of women with breast cancer, it is not clear whether it is involved in the aggressiveness of breast cancer. Thus, the present study examined whether VEGFR-1 activation is associated with the invasiveness of breast cancer. We reported that VEGFR-1 was detected in 60.6% of invasive breast carcinoma tissue sections. In addition, VEGFR-1 expression positively correlated with lymph node-positive tumor status, low expression level of membranous E-cadherin, and high expression levels of N-cadherin and Snail. We found that PlGF-mediated VEGFR-1 activation promoted migration and invasion in MCF-7 (luminal) cells and led to morphologic and molecular changes of epithelial-mesenchymal transition (EMT). This was blocked by the down-regulation of VEGFR-1. Conversely, down-regulation of VEGFR-1 in MDA-MB-231 (post-EMT) cells resulted in morphologic and molecular changes similar to mesenchymal-epithelial transition (MET), and exogenous PlGF could not reverse these changes. Moreover, VEGFR-1 activation led to an increase in nuclear translocation of Snail. Finally, MDA-MB-231 cells expressing shRNA against VEGFR-1 significantly decreased the tumor growth and metastasis capacity in a xenograft model. Histological examination of VEGFR-1/shRNA-expressing tumor xenografts showed up-regulation of E-cadherin and down-regulation of N-cadherin and Snail. These findings suggest that VEGFR-1 may promote breast cancer progression and metastasis, and therapies that target VEGFR-1 may be beneficial in the treatment of breast cancer patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: