2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 85 papers

Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494.

  • Y Wang‎ et al.
  • Oncogene‎
  • 2016‎

Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100.


Two-particle Bose-Einstein correlations in pp collisions at [Formula: see text] 0.9 and 7 TeV measured with the ATLAS detector.

  • G Aad‎ et al.
  • The European physical journal. C, Particles and fields‎
  • 2015‎

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range [Formula: see text] 100 MeV and [Formula: see text] 2.5 in proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 [Formula: see text]b[Formula: see text], 190 [Formula: see text]b[Formula: see text] and 12.4 nb[Formula: see text] for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size parameter is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.


Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract.

  • C M Posavad‎ et al.
  • Mucosal immunology‎
  • 2017‎

Local mucosal cellular immunity is critical in providing protection from HSV-2. To characterize and quantify HSV-2-reactive mucosal T cells, lymphocytes were isolated from endocervical cytobrush and biopsy specimens from 17 HSV-2-infected women and examined ex vivo for the expression of markers associated with maturation and tissue residency and for functional T-cell responses to HSV-2. Compared with their circulating counterparts, cervix-derived CD4+ and CD8+ T cells were predominantly effector memory T cells (CCR7-/CD45RA-) and the majority expressed CD69, a marker of tissue residency. Co-expression of CD103, another marker of tissue residency, was highest on cervix-derived CD8+ T cells. Functional HSV-2 reactive CD4+ and CD8+ T-cell responses were detected in cervical samples and a median of 17% co-expressed CD103. HSV-2-reactive CD4+ T cells co-expressed IL-2 and were significantly enriched in the cervix compared with blood. This first direct ex vivo documentation of local enrichment of HSV-2-reactive T cells in the human female genital mucosa is consistent with the presence of antigen-specific tissue-resident memory T cells. Ex vivo analysis of these T cells may uncover tissue-specific mechanisms of local control of HSV-2 to assist the development of vaccine strategies that target protective T cells to sites of HSV-2 infection.


Tumor suppressor Pdcd4 attenuates Sin1 translation to inhibit invasion in colon carcinoma.

  • Q Wang‎ et al.
  • Oncogene‎
  • 2017‎

Programmed cell death 4 (Pdcd4), a tumor invasion suppressor, is frequently downregulated in colorectal cancer and other cancers. In this study, we find that loss of Pdcd4 increases the activity of mammalian target of rapamycin complex 2 (mTORC2) and thereby upregulates Snail expression. Examining the components of mTORC2 showed that Pdcd4 knockdown increased the protein but not mRNA level of stress-activated-protein kinase interacting protein 1 (Sin1), which resulted from enhanced Sin1 translation. To understand how Pdcd4 regulates Sin1 translation, the SIN1 5' untranslated region (5'UTR) was fused with luciferase reporter and named as 5'Sin1-Luc. Pdcd4 knockdown/knockout significantly increased the translation of 5'Sin1-Luc but not the control luciferase without the SIN1 5'UTR, suggesting that Sin1 5'UTR is necessary for Pdcd4 to inhibit Sin1 translation. Ectopic expression of wild-type Pdcd4 and Pdcd4(157-469), a deletion mutant that binds to translation initiation factor 4A (eIF4A), sufficiently inhibited Sin1 translation, and thus suppressed mTORC2 kinase activity and invasion in colon tumor cells. By contrast, Pdcd4(157-469)(D253A,D418A), a mutant that does not bind to eIF4A, failed to inhibit Sin1 translation, and consequently failed to repress mTORC2 activity and invasion. In addition, directly inhibiting eIF4A with silvestrol significantly suppressed Sin1 translation and attenuated invasion. These results indicate that Pdcd4-inhibited Sin1 translation is through suppressing eIF4A, and functionally important for suppression of mTORC2 activity and invasion. Moreover, in colorectal cancer tissues, the Sin1 protein but not mRNA was significantly upregulated while Pdcd4 protein was downregulated, suggesting that loss of Pdcd4 might correlate with Sin1 protein level but not mRNA level in colorectal cancer patients. Taken together, our work reveals a novel mechanism by which Pdcd4 inhibits Sin1 translation to attenuatemTORC2 activity and thereby suppresses invasion.


Ribosomal s6 protein kinase 4: a prognostic factor for renal cell carcinoma.

  • L Fan‎ et al.
  • British journal of cancer‎
  • 2013‎

The expression and function of ribosomal s6 protein kinase 4 (RSK4) in renal cell carcinoma (RCC) are unknown.


Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance.

  • M J Saad‎ et al.
  • The Journal of clinical investigation‎
  • 1992‎

Insulin rapidly stimulates tyrosine phosphorylation of a protein of approximately 185 kD in most cell types. This protein, termed insulin receptor substrate-1 (IRS-1), has been implicated in insulin signal transmission based on studies with insulin receptor mutants. In the present study we have examined the levels of IRS-1 and the phosphorylation state of insulin receptor and IRS-1 in liver and muscle after insulin stimulation in vivo in two rat models of insulin resistance, i.e., insulinopenic diabetes and fasting, and a mouse model of non-insulin-dependent diabetes mellitus (ob/ob) by immunoblotting with anti-peptide antibodies to IRS-1 and anti-phosphotyrosine antibodies. As previously described, there was an increase in insulin binding and a parallel increase in insulin-stimulated receptor phosphorylation in muscle of fasting and streptozotocin-induced (STZ) diabetic rats. There was also a modest increase in overall receptor phosphorylation in liver in these two models, but when normalized for the increase in binding, receptor phosphorylation was decreased, in liver and muscle of STZ diabetes and in liver of 72 h fasted rats. In the hyperinsulinemic ob/ob mouse there was a decrease in insulin binding and receptor phosphorylation in both liver and muscle. The tyrosyl phosphorylation of IRS-1 after insulin stimulation reflected an amplification of the receptor phosphorylation in liver and muscle of hypoinsulinemic animals (fasting and STZ diabetes) with a twofold increase, and showed a significant reduction (approximately 50%) in liver and muscle of ob/ob mouse. By contrast, the levels of IRS-1 protein showed a tissue specific regulation with a decreased level in muscle and an increased level in liver in hypoinsulinemic states of insulin resistance, and decreased levels in liver in the hyperinsulinemic ob/ob mouse. These data indicate that: (a) IRS-1 protein levels are differentially regulated in liver and muscle; (b) insulin levels may play a role in this differential regulation of IRS-1; (c) IRS-1 phosphorylation depends more on insulin receptor kinase activity than IRS-1 protein levels; and (d) reduced IRS-1 phosphorylation in liver and muscle may play a role in insulin-resistant states, especially of the ob/ob mice.


Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion.

  • X N Meng‎ et al.
  • British journal of cancer‎
  • 2009‎

Focal adhesion kinase (FAK) is overexpressed in a variety of cancers, such as breast, colon, prostate, ovary, and lung cancers. However, the mechanism by which extracellular matrix fibronectin stimulates lung cancer cell migration and invasion through FAK remains to be investigated.


The RING Domain of RING Finger 12 Efficiently Builds Degradative Ubiquitin Chains.

  • A J Middleton‎ et al.
  • Journal of molecular biology‎
  • 2020‎

RNF12 is a widely expressed ubiquitin E3 ligase that is required for X-chromosome inactivation, regulation of LIM-domain containing transcription factors, and TGF-β signaling. A RING domain at the C terminus of RNF12 is important for its E3 ligase activity, and mutations in the RING domain are associated with X-linked intellectual disability. Here we have characterized ubiquitin transfer by RNF12, and show that the RING domain can bind to, and is active with, ubiquitin conjugating enzymes (E2s) that produce degradative ubiquitin chains. We report the crystal structures of RNF12 in complex with two of these E2 enzymes, as well as with an E2~Ub conjugate in a closed conformation. These structures form a basis for understanding the deleterious effect of a number of disease causing mutations. Comparison of the RNF12 structure with other monomeric RINGs suggests that a loop prior to the core RING domain has a conserved and essential role in stabilization of the active conformation of the bound E2~Ub conjugate. Together these findings provide a framework for better understanding substrate ubiquitylation by RNF12 and the impact of disease causing mutations.


Association of improved overall survival with decreased distant metastasis following asparaginase-based chemotherapy and radiotherapy for intermediate- and high-risk early-stage extranodal nasal-type NK/T-cell lymphoma: a CLCG study.

  • X Zheng‎ et al.
  • ESMO open‎
  • 2021‎

This study evaluated the survival benefit of asparaginase (ASP)-based versus non-ASP-based chemotherapy combined with radiotherapy in a real-world cohort of patients with early-stage extranodal nasal-type natural killer/T-cell lymphoma (ENKTCL).


Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.

  • F Folli‎ et al.
  • The Journal of clinical investigation‎
  • 1997‎

To investigate potential interactions between angiotensin II (AII) and the insulin signaling system in the vasculature, insulin and AII regulation of insulin receptor substrate-1 (IRS-1) phosphorylation and phosphatidylinositol (PI) 3-kinase activation were examined in rat aortic smooth muscle cells. Pretreatment of cells with AII inhibited insulin-stimulated PI 3-kinase activity associated with IRS-1 by 60%. While AII did not impair insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) beta-subunit, it decreased insulin-stimulated tyrosine phosphorylation of IRS-1 by 50%. AII inhibited the insulin-stimulated association between IRS-1 and the p85 subunit of PI 3-kinase by 30-50% in a dose-dependent manner. This inhibitory effect of AII on IRS-1/PI 3-kinase association was blocked by the AII receptor antagonist saralasin, but not by AT1 antagonist losartan or AT2 antagonist PD123319. AII increased the serine phosphorylation of both the IR beta-subunit and IRS-1. In vitro binding experiments showed that autophosphorylation increased IR binding to IRS-1 from control cells by 2.5-fold versus 1.2-fold for IRS-1 from AII-stimulated cells, suggesting that AII stimulation reduces IRS-1's ability to associate with activated IR. In addition, AII increased p85 serine phosphorylation, inhibited the total pool of p85 associated PI 3-kinase activity, and decreased levels of the p50/p55 regulatory subunit of PI 3-kinase. These results suggest that activation of the renin-angiotensin system may lead to insulin resistance in the vasculature.


Role of cAMP-dependent protein kinase A in activation of a voltage-sensitive release mechanism for cardiac contraction in guinea-pig myocytes.

  • G R Ferrier‎ et al.
  • The Journal of physiology‎
  • 1998‎

1. Ionic currents and unloaded cell shortening were recorded from guinea-pig ventricular myocytes with single electrode voltage clamp techniques and video edge detection at 37 C. Patch pipettes (1-3 MOmega) were used to provide intracellular dialysis with pipette solutions. 2. Na+ currents were blocked with 200 microM lidocaine. Contractions initiated by the voltage-sensitive release mechanism (VSRM) and Ca2+-induced Ca2+ release (CICR) in response to L-type Ca2+ current (ICa,L) were separated with voltage clamp protocols. 3. Without 8-bromo cyclic adenosine 3',5'-monophosphate (8-Br-cAMP) in the pipette, small VSRM-induced contractions occurred transiently in only 13% of myocytes. In contrast, large ICa,L-induced contractions were demonstrable in 100% of cells. 4. Addition of 10 or 50 microM 8-Br-cAMP to the pipette increased the percentage of cells exhibiting VSRM contractions to 68 and 93%, respectively. With 50 microM 8-Br-cAMP, contractions initiated by the VSRM and ICa,L were not significantly different in amplitude. 5. 8-Br-cAMP-supported VSRM contractions had characteristics of the VSRM shown previously in undialysed myocytes. Cd2+ (100 microM) blocked ICa,L and ICa,L contractions but not VSRM contractions. 8-Br-cAMP-supported contractions exhibited steady-state inactivation with parameters characteristic of the VSRM, as well as sigmoidal contraction-voltage relations. 6. Without 8-Br-cAMP in the pipette, contraction-voltage relations determined with steps from a post-conditioning potential (Vpc) of either -40 or -65 mV were bell shaped, with a threshold near -35 mV. With 50 microM 8-Br-cAMP in the pipette, contraction-voltage relations from a Vpc of -65 mV were sigmoidal and the threshold shifted to near -55 mV. Contraction-voltage relations remained bell shaped in the presence of 8-Br-cAMP when the Vpc was -40 mV. 7. H-89, which inhibits cAMP-dependent protein kinase A (PKA), significantly reduced the amplitudes of VSRM contractions by approximately 84% with 50 microM 8-Br-cAMP in the pipette. H-89 also significantly reduced the amplitudes of peak ICa, L and ICa,L contractions, although to a lesser extent. 8. We conclude that intracellular dialysis with patch pipettes disrupts the adenylyl cyclase-PKA phosphorylation cascade, and that the VSRM requires intracellular phosphorylation to be available for activation. Intracellular dialysis with solutions that do not maintain phosphorylation levels inhibits a major mechanism in cardiac excitation- contraction coupling.


Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins.

  • B Cheatham‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 1996‎

A major physiological role of insulin is the regulation of glucose uptake into skeletal and cardiac muscle and adipose tissue, mediated by an insulin-stimulated translocation of GLUT4 glucose transporters from an intracellular vesicular pool to the plasma membrane. This process is similar to the regulated docking and fusion of vesicles in neuroendocrine cells, a process that involves SNARE-complex proteins. Recently, several SNARE proteins were found in adipocytes: vesicle-associated membrane protein (VAMP-2), its related homologue cellubrevin, and syntaxin-4. In this report we show that treatment of permeabilized 3T3-L1 adipocytes with botulinum neurotoxin D, which selectively cleaves VAMP-2 and cellubrevin, inhibited the ability of insulin to stimulate translocation of GLUT4 vesicles to the plasma membrane. Furthermore, treatment of the permeabilized adipocytes with glutathione S-transferase fusion proteins encoding soluble forms of VAMP-2 or syntaxin-4 also effectively blocked insulin-regulated GLUT4 translocation. These results provide evidence of a functional role for SNARE-complex proteins in insulin-stimulated glucose uptake and suggest that adipocytes utilize a mechanism of regulating vesicle docking and fusion analogous to that found in neuroendocrine tissues.


Development of an in vitro reconstitution assay for glucose transporter 4 translocation.

  • G Inoue‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 1999‎

In an attempt to define the mechanism of insulin-regulated glucose transporter 4 (Glut4) translocation, we have developed an in vitro reconstitution assay. Donor membranes from 3T3-L1 adipocytes transfected with mycGlut4 were incubated with plasma membrane (PM) from nontransfected 3T3-L1 cells, and the association was assessed by using two types of centrifugation assays. Association of mycGlut4 vesicles derived from donor membranes with the PM was concentration-, temperature-, time-, and Ca(2+)-dependent but ATP-independent. Addition of a syntaxin 4 fusion protein produced a biphasic response, increasing association at low concentration and inhibiting association at higher concentrations. PM from insulin-stimulated cells showed an enhanced association as compared with those from untreated cells. Use of donor membranes from insulin-stimulated cells further enhanced the association and also enhanced association to the PM from isolated rat adipocytes. Addition of cytosol, GTP, or guanosine 5'-[gamma-thio]triphosphate decreased the association. In summary, insulin-induced Glut4 translocation can be reconstituted in vitro to a limited extent by using isolated membranes. This association appears to involve protein-protein interactions among the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. Finally, the ability of insulin to enhance association depends on insulin-induced changes in the PM and, to a lesser extent, in the donor membranes.


Selective interaction between leptin and insulin signaling pathways in a hepatic cell line.

  • I Szanto‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2000‎

Leptin is a 16-kDa hormone secreted by adipocytes and plays an important role in control of feeding behavior and energy expenditure. In obesity, circulating levels of leptin and insulin are high because of the presence of increased body fat mass and insulin resistance. Recent reports have suggested that leptin can act through some of the components of the insulin signaling cascade, such as insulin receptor substrates (IRS-1 and IRS-2), phosphatidylinositol 3-kinase (PI 3-kinase), and mitogen-activated protein kinase, and can modify insulin-induced changes in gene expression in vitro and in vivo. Well differentiated hepatoma cells (Fao) possess both the long and short forms of the leptin receptor and respond to leptin with a stimulation of c-fos gene expression. In Fao cells, leptin alone had no effects on the insulin signaling pathway, but leptin pretreatment transiently enhanced insulin-induced tyrosine phosphorylation and PI 3-kinase binding to IRS-1, while producing an inhibition of tyrosine phosphorylation and PI 3-kinase binding to IRS-2. Leptin alone also induced serine phosphorylation of Akt and glycogen synthase kinase 3 but to a lesser extent than insulin, and the combination of these hormones was not additive. These results suggest complex interactions between the leptin and insulin signaling pathways that can potentially lead to differential modification of the metabolic and mitotic effects of insulin exerted through IRS-1 and IRS-2 and the downstream kinases that they activate.


Unbalanced expression of the different subunits of elongation factor 1 in diabetic skeletal muscle.

  • C Reynet‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2001‎

In studies using subtraction cloning to screen for alterations in mRNA expression in skeletal muscle from humans with Type 2 diabetes mellitus and control subjects, one of the most prominent differences was in the mRNA for elongation factor (EF)-1alpha. With Northern blot analysis, EF-1alpha expression was enhanced by 2- to 6-fold in both Types 1 and 2 human diabetics. In contrast, no changes in expression of EF-1beta or -gamma were noted. We observed similar results in animal models of Type 1 diabetes. EF-1alpha expression, but not EF-1beta or -gamma expression, was also enhanced in streptozotocin-induced diabetic rats, and this effect was reversed by insulin treatment. An increased level of EF-1alpha mRNA was also observed in nonobese diabetic mice. This unbalanced regulation of the expression of the different subunits of EF-1 may contribute to alterations not only in protein synthesis but also in other cellular events observed in the diabetic state.


Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway.

  • X Zhao‎ et al.
  • Cell death & disease‎
  • 2015‎

Hepatocarcinogenesis is a complex process involving chronic liver injury, inflammation, unregulated wound healing, subsequent fibrosis and carcinogenesis. To decipher the molecular mechanism underlying transition from chronic liver injury to dysplasia, we investigated the oncogenic role of gankyrin (PSMD10 or p28GANK) during malignant transformation in a transgenic mouse model. Here, we find that gankyrin increased in patients with cirrhosis. In addition to more severe liver fibrosis and tumorigenesis after DEN plus CCl4 treatment, hepatocyte-specific gankyrin-overexpressing mice (gankyrinhep) exhibited malignant transformation from liver fibrosis to tumors even under single CCl4 administration, whereas wild-type mice merely experienced fibrosis. Consistently, enhanced hepatic injury, severe inflammation and strengthened compensatory proliferation occurred in gankyrinhep) mice during CCl4 performance. This correlated with augmented expressions of cell cycle-related genes and abnormal activation of Rac1/c-jun N-terminal kinase (JNK). Pharmacological inhibition of the Rac1/JNK pathway attenuated hepatic fibrosis and prevented CCl4-induced carcinogenesis in gankyrinhep mice. Together, these findings suggest that gankyrin promotes liver fibrosis/cirrhosis progression into hepatocarcinoma relying on a persistent liver injury and inflammatory microenvironment. Blockade of Rac1/JNK activation impeded gankyrin-mediated hepatocytic malignant transformation, indicating the combined inhibition of gankyrin and Rac1/JNK as a potential prevention mechanism for cirrhosis transition.


Measurement of azimuthal correlations of D mesons with charged particles in pp collisions at [Formula: see text] TeV and p-Pb collisions at [Formula: see text] TeV.

  • J Adam‎ et al.
  • The European physical journal. C, Particles and fields‎
  • 2017‎

The azimuthal correlations of D mesons with charged particles were measured with the ALICE apparatus in pp collisions at [Formula: see text] and p-Pb collisions at [Formula: see text] at the Large Hadron Collider. [Formula: see text], [Formula: see text], and [Formula: see text] mesons and their charge conjugates with transverse momentum [Formula: see text] and rapidity in the nucleon-nucleon centre-of-mass system [Formula: see text] (pp collisions) and [Formula: see text] (p-Pb collisions) were correlated to charged particles with [Formula: see text]. The yield of charged particles in the correlation peak induced by the jet containing the D meson and the peak width are compatible within uncertainties in the two collision systems. The data are described within uncertainties by Monte-Carlo simulations based on PYTHIA, POWHEG, and EPOS 3 event generators.


The insulin receptor with phenylalanine replacing tyrosine-1146 provides evidence for separate signals regulating cellular metabolism and growth.

  • P A Wilden‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 1990‎

We have studied the function of a mutant insulin receptor (IR) molecule in which Tyr-1146, one of the first autophosphorylation sites in the beta subunit, was replaced with phenylalanine (IRF1146). Autophosphorylation of the partially purified IRF1146 was reduced 60-70% when compared to the wild-type IR but was still stimulated by insulin. The phosphotransferase activity of the dephospho form of both the IR and IRF1146 toward exogenous substrates was stimulated 3- to 4-fold by insulin. However, the wild-type IR was activated 12-fold by autophosphorylation, whereas the IRF1146 was activated only 2-fold. When the IRF1146 was expressed in Chinese hamster ovary (CHO) cells, insulin binding was normal, whereas autophosphorylation was reduced 80% when compared to cells expressing the wild-type IR. Endogenous substrates of the insulin receptor kinase were not detected during insulin stimulation of CHO cells expressing the IRF1146. Moreover, the IRF1146 did not internalize insulin rapidly or stimulate DNA synthesis in the presence of insulin. In contrast, both the IR and IRF1146 stimulated glycogen synthase equally in CHO cells. These data suggest that activation of the IR tyrosine kinase can be resolved into two components: the first is dependent on insulin binding and the second is dependent on the subsequent insulin-stimulated autophosphorylation cascade. Thus, at least two signal transduction pathways diverging from the IR are implicated in the mechanism of insulin action.


Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis.

  • S Kamarajugadda‎ et al.
  • Cell death & disease‎
  • 2013‎

Normal cells require adhesion to extracellular matrix for survival. Cell detachment causes a drastic increase in reactive oxygen species (ROS) that promotes anoikis. In the present study, we observed that upon detachment from matrix, human mammary epithelial cells strongly upregulate manganese superoxide dismutase (MnSOD, or SOD2), a principal mitochondrial antioxidant enzyme that detoxifies ROS through dismutation of superoxide. Induction of MnSOD by cell detachment is dependent on the NFκB transcription factor. Detachment of mammary epithelial cells potently increases mitochondrial superoxide levels, which are further elevated by depletion of MnSOD in suspended cells. Consequently, cells depleted of MnSOD are hypersensitive to matrix detachment and exhibit increased anoikis. These results suggest that detachment-induced MnSOD counters mitochondrial superoxide accumulation and confers anoikis resistance. Taken together with our previous finding that detached cells evade excessive ROS production by attenuating oxidative metabolism of glucose, we conclude that mammary epithelial cells coordinate their responses to detachment through increasing MnSOD and decreasing ROS generation from mitochondrial glucose oxidation, thereby mitigating anoikis. Anoikis is a barrier to tumor metastasis. Indeed, MnSOD expression is elevated in human breast cancer metastases compared with primary tumors. Expression of MnSOD correlates with histologic tumor grades in human cancer and contributes to cancer cell's resistance to anoikis. Our study suggests that inhibition of ROS detoxification coupled with stimulation of glucose oxidative metabolism may be an efficient strategy to enhance anoikis and block metastasis.


Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians.

  • H Li‎ et al.
  • Diabetologia‎
  • 2012‎

FTO harbours the strongest known obesity-susceptibility locus in Europeans. While there is growing evidence for a role for FTO in obesity risk in Asians, its association with type 2 diabetes, independently of BMI, remains inconsistent. To test whether there is an association of the FTO locus with obesity and type 2 diabetes, we conducted a meta-analysis of 32 populations including 96,551 East and South Asians.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: