Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 85 papers

Genomic and functional overlap between somatic and germline chromosomal rearrangements.

  • Sebastiaan van Heesch‎ et al.
  • Cell reports‎
  • 2014‎

Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.


Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature.

  • Zehra Ordulu‎ et al.
  • American journal of human genetics‎
  • 2014‎

With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of "next-generation cytogenetics" (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting.


Genetic landscape of T- and NK-cell post-transplant lymphoproliferative disorders.

  • Elizabeth Margolskee‎ et al.
  • Oncotarget‎
  • 2016‎

Post-transplant lymphoproliferative disorders of T- or NK-cell origin (T/NK-PTLD) are rare entities and their genetic basis is unclear. We performed targeted sequencing of 465 cancer-related genes and high-resolution copy number analysis in 17 T-PTLD and 2 NK-PTLD cases. Overall, 377 variants were detected, with an average of 20 variants per case. Mutations of epigenetic modifier genes (TET2, KMT2C, KMT2D, DNMT3A, ARID1B, ARID2, KDM6B, n=11). and inactivation of TP53 by mutation and/or deletion(n=6) were the most frequent alterations, seen across disease subtypes, followed by mutations of JAK/STAT pathway genes (n=5). Novel variants, including mutations in TBX3 (n=3), MED12 (n=3) and MTOR (n=1), were observed as well. High-level microsatellite instability was seen in 1 of 14 (7%) cases, which had a heterozygous PMS2 mutation. Complex copy number changes were detected in 8 of 16 (50%) cases and disease subtype-specific aberrations were also identified. In contrast to B-cell PTLDs, the molecular and genomic alterations observed in T/NK-PTLD appear similar to those reported for peripheral T-cell lymphomas occurring in immunocompetent hosts, which may suggest common genetic mechanisms of lymphoma development.


Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder.

  • Michael E Talkowski‎ et al.
  • American journal of human genetics‎
  • 2011‎

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


Identification of novel genomic imbalances in Saudi patients with congenital heart disease.

  • Zuhair N Al-Hassnan‎ et al.
  • Molecular cytogenetics‎
  • 2018‎

Quick genetic diagnosis of a patient with congenital heart disease (CHD) is quite important for proper health care and management. Copy number variations (CNV), chromosomal imbalances and rearrangements have been frequently associated with CHD. Previously, due to limitations of microscope based standard karyotyping techniques copious CNVs and submicroscopic imbalances could not be detected in numerous CHD patients. The aim of our study is to identify cytogenetic abnormalities among the selected CHD cases (n = 17) of the cohort using high density oligo arrays.


Pain correlates with germline mutation in schwannomatosis.

  • Justin T Jordan‎ et al.
  • Medicine‎
  • 2018‎

Schwannomatosis has been linked to germline mutations in the SMARCB1 and LZTR1 genes, and is frequently associated with pain.In a cohort study, we assessed the mutation status of 37 patients with clinically diagnosed schwannomatosis and compared to clinical data, whole body MRI (WBMRI), visual analog pain scale, and Short Form 36 (SF-36) bodily pain subscale.We identified a germline mutation in LZTR1 in 5 patients (13.5%) and SMARCB1 in 15 patients (40.5%), but found no germline mutation in 17 patients (45.9%). Peripheral schwannomas were detected in 3 LZTR1-mutant (60%) and 10 SMARCB1-mutant subjects (66.7%). Among those with peripheral tumors, the median tumor number was 4 in the LZTR1 group (median total body tumor volume 30 cc) and 10 in the SMARCB1 group (median volume 85cc), (P=.2915 for tumor number and P = .2289 for volume). mutation was associated with an increased prevalence of spinal schwannomas (100% vs 41%, P = .0197). The median pain score was 3.9/10 in the LZTR1 group and 0.5/10 in the SMARCB1 group (P = .0414), and SF-36 pain-associated quality of life was significantly worse in the LZTR1 group (P = .0106). Pain scores correlated with total body tumor volume (rho = 0.32471, P = .0499), but not with number of tumors (rho = 0.23065, P = .1696).We found no significant difference in quantitative tumor burden between mutational groups, but spinal schwannomas were more common in LZTR1-mutant patients. Pain was significantly higher in LZTR1-mutant than in SMARCB1-mutant patients, though spinal tumor location did not significantly correlate with pain. This suggests a possible genetic association with schwannomatosis-associated pain.


Risks and Recommendations in Prenatally Detected De Novo Balanced Chromosomal Rearrangements from Assessment of Long-Term Outcomes.

  • Christina Halgren‎ et al.
  • American journal of human genetics‎
  • 2018‎

The 6%-9% risk of an untoward outcome previously established by Warburton for prenatally detected de novo balanced chromosomal rearrangements (BCRs) does not account for long-term morbidity. We performed long-term follow-up (mean 17 years) of a registry-based nationwide cohort of 41 individuals carrying a prenatally detected de novo BCR with normal first trimester screening/ultrasound scan. We observed a significantly higher frequency of neurodevelopmental and/or neuropsychiatric disorders than in a matched control group (19.5% versus 8.3%, p = 0.04), which was increased to 26.8% upon clinical follow-up. Chromosomal microarray of 32 carriers revealed no pathogenic imbalances, illustrating a low prognostic value when fetal ultrasound scan is normal. In contrast, mate-pair sequencing revealed disrupted genes (ARID1B, NPAS3, CELF4), regulatory domains of known developmental genes (ZEB2, HOXC), and complex BCRs associated with adverse outcomes. Seven unmappable autosomal-autosomal BCRs with breakpoints involving pericentromeric/heterochromatic regions may represent a low-risk group. We performed independent phenotype-aware and blinded interpretation, which accurately predicted benign outcomes (specificity = 100%) but demonstrated relatively low sensitivity for prediction of the clinical outcome in affected carriers (sensitivity = 45%-55%). This sensitivity emphasizes the challenges associated with prenatal risk prediction for long-term morbidity in the absence of phenotypic data given the still immature annotation of the morbidity genome and poorly understood long-range regulatory mechanisms. In conclusion, we upwardly revise the previous estimates of Warburton to a morbidity risk of 27% and recommend sequencing of the chromosomal breakpoints as the first-tier diagnostic test in pregnancies with a de novo BCR.


Mapping and phasing of structural variation in patient genomes using nanopore sequencing.

  • Mircea Cretu Stancu‎ et al.
  • Nature communications‎
  • 2017‎

Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.


A rapid and simple bead-bashing-based method for genomic DNA extraction from mammalian tissue.

  • Shan Wei‎ et al.
  • BioTechniques‎
  • 2020‎

Conventional genomic DNA (gDNA) extraction methods can take hours to complete, may require fume hoods and represent the most time-consuming step in many gDNA-based molecular assays. We systematically optimized a bead bashing-based (BBB) approach for rapid gDNA extraction without the need for a fume hood. Human tissue specimens (n = 34) subjected to the 12-min BBB method yielded 0.40 ± 0.17 (mean ± SD) μg of gDNA per milligram of tissue, sufficient for many downstream applications, and 3- and 6-min extensions resulted in an additional 0.43 ± 0.23 μg and 0.48 ± 0.43 μg per milligram of tissue, respectively. The BBB method provides a simple and rapid method for gDNA extraction from mammalian tissue that is applicable to time-sensitive clinical applications.


The copy number variation landscape of congenital anomalies of the kidney and urinary tract.

  • Miguel Verbitsky‎ et al.
  • Nature genetics‎
  • 2019‎

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (that is, affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; and vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12 and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3 and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.


Excitatory Dysfunction Drives Network and Calcium Handling Deficits in 16p11.2 Duplication Schizophrenia Induced Pluripotent Stem Cell-Derived Neurons.

  • Euan Parnell‎ et al.
  • Biological psychiatry‎
  • 2023‎

Schizophrenia (SCZ) is a debilitating psychiatric disorder with a large genetic contribution; however, its neurodevelopmental substrates remain largely unknown. Modeling pathogenic processes in SCZ using human induced pluripotent stem cell-derived neurons (iNs) has emerged as a promising strategy. Copy number variants confer high genetic risk for SCZ, with duplication of the 16p11.2 locus increasing the risk 14.5-fold.


Multisite Assessment of Optical Genome Mapping for Analysis of Structural Variants in Constitutional Postnatal Cases.

  • M Anwar Iqbal‎ et al.
  • The Journal of molecular diagnostics : JMD‎
  • 2023‎

This study compares optical genome mapping (OGM) performed at multiple sites with current standard-of-care (SOC) methods used in clinical cytogenetics. This study included 50 negative controls and 359 samples from individuals (patients) with suspected genetic conditions referred for cytogenetic testing. OGM was performed using the Saphyr system and Bionano Access software version 1.7. Structural variants, including copy number variants, aneuploidy, and regions of homozygosity, were detected and classified according to American College of Medical Genetics and Genomics guidelines. Repeated expansions in FMR1 and contractions in facioscapulohumeral dystrophy 1 were also analyzed. OGM results were compared with SOC for technical concordance, clinical classification concordance, intrasite and intersite reproducibility, and ability to provide additional, clinically relevant information. Across five testing sites, 98.8% (404/409) of samples yielded successful OGM data for analysis and interpretation. Overall, technical concordance for OGM to detect previously reported SOC results was 99.5% (399/401). The blinded analysis and variant classification agreement between SOC and OGM was 97.6% (364/373). Replicate analysis of 130 structural variations was 100% concordant. On the basis of this demonstration of the analytic validity and clinical utility of OGM by this multisite assessment, the authors recommend this technology as an alternative to existing SOC tests for rapid detection and diagnosis in postnatal constitutional disorders.


Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis.

  • Katherine A Fantauzzo‎ et al.
  • PLoS genetics‎
  • 2012‎

Hereditary hypertrichoses are a group of hair overgrowth syndromes that are extremely rare in humans. We have previously demonstrated that a position effect on TRPS1 is associated with hypertrichosis in humans and mice. To gain insight into the functional role of Trps1, we analyzed the late morphogenesis vibrissae phenotype of Trps1(Δgt) mutant mice, which is characterized by follicle degeneration after peg downgrowth has been initiated. We found that Trps1 directly represses expression of the hair follicle stem cell regulator Sox9 to control proliferation of the follicle epithelium. Furthermore, we identified a copy number variation upstream of SOX9 in a family with hypertrichosis that significantly decreases expression of the gene in the hair follicle, providing new insights into the long-range regulation of SOX9. Our findings uncover a novel transcriptional hierarchy that regulates epithelial proliferation in the developing hair follicle and contributes to the pathology of hypertrichosis.


Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders.

  • Harrison Brand‎ et al.
  • American journal of human genetics‎
  • 2014‎

Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a "paired" duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.


Hypomorphic mutation of the mouse Huntington's disease gene orthologue.

  • Vidya Murthy‎ et al.
  • PLoS genetics‎
  • 2019‎

Rare individuals with inactivating mutations in the Huntington's disease gene (HTT) exhibit variable abnormalities that imply essential HTT roles during organ development. Here we report phenotypes produced when increasingly severe hypomorphic mutations in the murine HTT orthologue Htt, (HdhneoQ20, HdhneoQ50, HdhneoQ111), were placed over a null allele (Hdhex4/5). The most severe hypomorphic allele failed to rescue null lethality at gastrulation, while the intermediate, though still severe, alleles yielded recessive perinatal lethality and a variety of fetal abnormalities affecting body size, skin, skeletal and ear formation, and transient defects in hematopoiesis. Comparative molecular analysis of wild-type and Htt-null retinoic acid-differentiated cells revealed gene network dysregulation associated with organ development that nominate polycomb repressive complexes and miRNAs as molecular mediators. Together these findings demonstrate that Htt is required both pre- and post-gastrulation to support normal development.


Validation Studies for Single Circulating Trophoblast Genetic Testing as a Form of Noninvasive Prenatal Diagnosis.

  • Liesbeth Vossaert‎ et al.
  • American journal of human genetics‎
  • 2019‎

It has long been appreciated that genetic analysis of fetal or trophoblast cells in maternal blood could revolutionize prenatal diagnosis. We implemented a protocol for single circulating trophoblast (SCT) testing using positive selection by magnetic-activated cell sorting and single-cell low-coverage whole-genome sequencing to detect fetal aneuploidies and copy-number variants (CNVs) at ∼1 Mb resolution. In 95 validation cases, we identified on average 0.20 putative trophoblasts/mL, of which 55% were of high quality and scorable for both aneuploidy and CNVs. We emphasize the importance of analyzing individual cells because some cells are apoptotic, in S-phase, or otherwise of poor quality. When two or more high-quality trophoblast cells were available for singleton pregnancies, there was complete concordance between all trophoblasts unless there was evidence of confined placental mosaicism. SCT results were highly concordant with available clinical data from chorionic villus sampling (CVS) or amniocentesis procedures. Although determining the exact sensitivity and specificity will require more data, this study further supports the potential for SCT testing to become a diagnostic prenatal test.


Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism.

  • F Kyle Satterstrom‎ et al.
  • Cell‎
  • 2020‎

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex.

  • Donna M Werling‎ et al.
  • Cell reports‎
  • 2020‎

Gene expression levels vary across developmental stage, cell type, and region in the brain. Genomic variants also contribute to the variation in expression, and some neuropsychiatric disorder loci may exert their effects through this mechanism. To investigate these relationships, we present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal development. Here we identify common variants that alter gene expression (expression quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or postnatal stages. Both "constant" and "temporal-predominant" eQTLs are enriched for loci associated with neuropsychiatric traits and disorders and colocalize with specific variants. Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, underscoring the importance of cataloging developmental trajectories in understanding cortical physiology and pathology.


Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells.

  • Kim L Keen‎ et al.
  • Endocrinology‎
  • 2021‎

Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker mCherry labeled human embryonic GnRH cell line (mCh-hESC) using a CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals; GnRH release increased in response to high potassium, kisspeptin, estradiol, and neurokinin B challenges; and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the 3 cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as idiopathic hypothalamic hypogonadism, and testing contraceptive drugs.


A deep learning approach to identify gene targets of a therapeutic for human splicing disorders.

  • Dadi Gao‎ et al.
  • Nature communications‎
  • 2021‎

Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: