2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Genetic variation in the TP53 pathway and bladder cancer risk. a comprehensive analysis.

  • Silvia Pineda‎ et al.
  • PloS one‎
  • 2014‎

Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk.


Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor.

  • Bruno Sainz‎ et al.
  • Nature medicine‎
  • 2012‎

Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ∼170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture-derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe potently blocks HCV uptake in vitro via a virion cholesterol-dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.


Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background.

  • Idan Menashe‎ et al.
  • PloS one‎
  • 2012‎

Pathway analysis of genome-wide association studies (GWAS) offer a unique opportunity to collectively evaluate genetic variants with effects that are too small to be detected individually. We applied a pathway analysis to a bladder cancer GWAS containing data from 3,532 cases and 5,120 controls of European background (n = 5 studies). Thirteen hundred and ninety-nine pathways were drawn from five publicly available resources (Biocarta, Kegg, NCI-PID, HumanCyc, and Reactome), and we constructed 22 additional candidate pathways previously hypothesized to be related to bladder cancer. In total, 1421 pathways, 5647 genes and ∼90,000 SNPs were included in our study. Logistic regression model adjusting for age, sex, study, DNA source, and smoking status was used to assess the marginal trend effect of SNPs on bladder cancer risk. Two complementary pathway-based methods (gene-set enrichment analysis [GSEA], and adapted rank-truncated product [ARTP]) were used to assess the enrichment of association signals within each pathway. Eighteen pathways were detected by either GSEA or ARTP at P≤0.01. To minimize false positives, we used the I(2) statistic to identify SNPs displaying heterogeneous effects across the five studies. After removing these SNPs, seven pathways ('Aromatic amine metabolism' [P(GSEA) = 0.0100, P(ARTP) = 0.0020], 'NAD biosynthesis' [P(GSEA) = 0.0018, P(ARTP) = 0.0086], 'NAD salvage' [P(ARTP) = 0.0068], 'Clathrin derived vesicle budding' [P(ARTP) = 0.0018], 'Lysosome vesicle biogenesis' [P(GSEA) = 0.0023, P(ARTP)<0.00012], 'Retrograde neurotrophin signaling' [P(GSEA) = 0.00840], and 'Mitotic metaphase/anaphase transition' [P(GSEA) = 0.0040]) remained. These pathways seem to belong to three fundamental cellular processes (metabolic detoxification, mitosis, and clathrin-mediated vesicles). Identification of the aromatic amine metabolism pathway provides support for the ability of this approach to identify pathways with established relevance to bladder carcinogenesis.


Selective death of human breast cancer cells by lytic immunoliposomes: Correlation with their HER2 expression level.

  • Enrique Barrajón-Catalán‎ et al.
  • Cancer letters‎
  • 2010‎

Trastuzumab (Herceptin) targets the human epidermal growth factor receptor 2 (HER2), which is overexpressed in 20-30% of breast and ovarian cancers carrying a bad prognosis. Our purpose was to target HER2-overexpressing human breast cancer cells with pegylated immunoliposomes bearing trastuzumab and containing melittin, which has recently shown anticancer properties. Using a panel of human breast cancer cells with different HER2 expression levels, these immunoliposomes decreased cancer cells viability in a dose-response manner and in correlation to their level of HER2 expression. Specific binding of the immunoliposomes to SKBr3 breast cancer cells was shown by ImageStream-based analysis. The morphological changes observed in the treated cells suggested a cytolytic process. This preclinical approach may suppose an effective strategy for the treatment of HER2-overexpressing tumors, and can support the development of an early phases I-II clinical trial. Trastuzumab resistant breast cancer cells (JIMT-1), can also be targeted using this approach.


Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

  • Montserrat García-Closas‎ et al.
  • PLoS genetics‎
  • 2007‎

Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs) in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5)). To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651) were associated with increased risk for bladder cancer: odds ratio (95% confidence interval): 2.52 (1.06-5.97), 2.74 (1.26-5.98), and 3.02 (1.36-6.63), respectively; and a polymorphism in intron 2 (rs3024994) was associated with reduced risk: 0.65 (0.46-0.91). Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively). These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.


Functional PTGS2 polymorphism-based models as novel predictive markers in metastatic renal cell carcinoma patients receiving first-line sunitinib.

  • Arancha Cebrián‎ et al.
  • Scientific reports‎
  • 2017‎

Sunitinib is the currently standard treatment for metastatic renal cell carcinoma (mRCC). Multiple candidate predictive biomarkers for sunitinib response have been evaluated but none of them has been implemented in the clinic yet. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) in genes linked to mode of action of sunitinib and immune response as biomarkers for mRCC. This is a multicenter, prospective and observational study involving 20 hospitals. Seventy-five mRCC patients treated with sunitinib as first line were used to assess the impact of 63 SNPs in 31 candidate genes on clinical outcome. rs2243250 (IL4) and rs5275 (PTGS2) were found to be significantly associated with shorter cancer-specific survival (CSS). Moreover, allele C (rs5275) was associated with higher PTGS2 expression level confirming its functional role. Combination of rs5275 and rs7651265 or rs2243250 for progression free survival (PFS) or CSS, respectively, was a more valuable predictive biomarker remaining significant after correction for multiple testing. It is the first time that association of rs5275 with survival in mRCC patients is described. Two-SNP models containing this functional variant may serve as more predictive biomarkers for sunitinib and could suppose a clinically relevant tool to improve the mRCC patient management.


Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells.

  • Sandra Valle‎ et al.
  • Nature communications‎
  • 2020‎

Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7-9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.


Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug.

  • Emilia Alors-Perez‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target.


A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer.

  • Evangelina López de Maturana‎ et al.
  • Genome medicine‎
  • 2021‎

Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance.


Inhibition of Mitochondrial Dynamics Preferentially Targets Pancreatic Cancer Cells with Enhanced Tumorigenic and Invasive Potential.

  • Sarah Courtois‎ et al.
  • Cancers‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, partly due to its intrinsic aggressiveness, metastatic potential, and chemoresistance of the contained cancer stem cells (CSCs). Pancreatic CSCs strongly rely on mitochondrial metabolism to maintain their stemness, therefore representing a putative target for their elimination. Since mitochondrial homeostasis depends on the tightly controlled balance between fusion and fission processes, namely mitochondrial dynamics, we aim to study this mechanism in the context of stemness. In human PDAC tissues, the mitochondrial fission gene DNM1L (DRP1) was overexpressed and positively correlated with the stemness signature. Moreover, we observe that primary human CSCs display smaller mitochondria and a higher DRP1/MFN2 expression ratio, indicating the activation of the mitochondrial fission. Interestingly, treatment with the DRP1 inhibitor mDivi-1 induced dose-dependent apoptosis, especially in CD133+ CSCs, due to the accumulation of dysfunctional mitochondria and the subsequent energy crisis in this subpopulation. Mechanistically, mDivi-1 inhibited stemness-related features, such as self-renewal, tumorigenicity, and invasiveness and chemosensitized the cells to the cytotoxic effects of Gemcitabine. In summary, mitochondrial fission is an essential process for pancreatic CSCs and represents an attractive target for designing novel multimodal treatments that will more efficiently eliminate cells with high tumorigenic potential.


The effect of medical and urologic disorders on the survival of patients with metastatic castration resistant prostate cancer treated with abiraterone or enzalutamide.

  • Juan José Serrano Domingo‎ et al.
  • Therapeutic advances in urology‎
  • 2021‎

Androgenic deprivation therapies have been linked to the development of metabolic syndrome (MS) and cardiovascular diseases, which may lead to a poorer survival in patients with metastatic Castration-Resistant Prostate Cancer (mCRPC). We aimed to analyze whether some cardiovascular or neurological disorders, together with other medical and urological complications, may have an effect on survival outcomes, at baseline and during treatment from patients treated with androgen pathway inhibitors (API).


CD8+ Cytotoxic Immune Infiltrate in Non-Muscle Invasive Bladder Cancer: A Standardized Methodology to Study Association with Clinico-Pathological Features and Prognosis.

  • Alexandra Masson-Lecomte‎ et al.
  • Bladder cancer (Amsterdam, Netherlands)‎
  • 2019‎

Major interest lies in the evaluation of immune infiltrate in bladder cancer. CD8+ cytotoxic lymphocytes are key effectors of adaptive immune response.


Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity.

  • Quan Zheng‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2023‎

Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs.


Integration Analysis of Three Omics Data Using Penalized Regression Methods: An Application to Bladder Cancer.

  • Silvia Pineda‎ et al.
  • PLoS genetics‎
  • 2015‎

Omics data integration is becoming necessary to investigate the genomic mechanisms involved in complex diseases. During the integration process, many challenges arise such as data heterogeneity, the smaller number of individuals in comparison to the number of parameters, multicollinearity, and interpretation and validation of results due to their complexity and lack of knowledge about biological processes. To overcome some of these issues, innovative statistical approaches are being developed. In this work, we propose a permutation-based method to concomitantly assess significance and correct by multiple testing with the MaxT algorithm. This was applied with penalized regression methods (LASSO and ENET) when exploring relationships between common genetic variants, DNA methylation and gene expression measured in bladder tumor samples. The overall analysis flow consisted of three steps: (1) SNPs/CpGs were selected per each gene probe within 1Mb window upstream and downstream the gene; (2) LASSO and ENET were applied to assess the association between each expression probe and the selected SNPs/CpGs in three multivariable models (SNP, CPG, and Global models, the latter integrating SNPs and CPGs); and (3) the significance of each model was assessed using the permutation-based MaxT method. We identified 48 genes whose expression levels were significantly associated with both SNPs and CPGs. Importantly, 36 (75%) of them were replicated in an independent data set (TCGA) and the performance of the proposed method was checked with a simulation study. We further support our results with a biological interpretation based on an enrichment analysis. The approach we propose allows reducing computational time and is flexible and easy to implement when analyzing several types of omics data. Our results highlight the importance of integrating omics data by applying appropriate statistical strategies to discover new insights into the complex genetic mechanisms involved in disease conditions.


Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain.

  • Kenneth P Cantor‎ et al.
  • Environmental health perspectives‎
  • 2010‎

Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water.


Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein.

  • Bruno Sainz‎ et al.
  • Virus research‎
  • 2006‎

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the cause of an atypical pneumonia that affected Asia, North America and Europe in 2002-2003. The viral spike (S) glycoprotein is responsible for mediating receptor binding and membrane fusion. Recent studies have proposed that the carboxyl terminal portion (S2 subunit) of the S protein is a class I viral fusion protein. The Wimley and White interfacial hydrophobicity scale was used to identify regions within the CoV S2 subunit that may preferentially associate with lipid membranes with the premise that peptides analogous to these regions may function as inhibitors of viral infectivity. Five regions of high interfacial hydrophobicity spanning the length of the S2 subunit of SARS-CoV and murine hepatitis virus (MHV) were identified. Peptides analogous to regions of the N-terminus or the pre-transmembrane domain of the S2 subunit inhibited SARS-CoV plaque formation by 40-70% at concentrations of 15-30 microM. Interestingly, peptides analogous to the SARS-CoV or MHV loop region inhibited viral plaque formation by >80% at similar concentrations. The observed effects were dose-dependent (IC50 values of 2-4 microM) and not a result of peptide-mediated cell cytotoxicity. The antiviral activity of the CoV peptides tested provides an attractive basis for the development of new fusion peptide inhibitors corresponding to regions outside the fusion protein heptad repeat regions.


Novel Molecular Characterization of Colorectal Primary Tumors Based on miRNAs.

  • Elisa Conde Moreno‎ et al.
  • Cancers‎
  • 2019‎

microRNAs (miRNA) expression in colorectal (CR) primary tumours can facilitate a more precise molecular characterization. We identified and validated a miRNA profile associated with clinical and histopathological features that might be useful for patient stratification. In situ hybridization array using paraffin-embedded biopsies of CR primary tumours were used to screen 1436 miRNAs. 17 miRNAs were selected for validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) (n = 192) and were further correlated with clinical and histopathological data. We demonstrated that miRNAs associated to Colorectal Cancer (CRC) diagnosis age (over 50s and 60s) included miR-1-3p, miR-23b-3p, miR-27b-3p, miR-143-3p, miR-145-5p and miR-193b-5p. miR-23b-3p and miR-24-3p discriminated between Lynch Syndrome and sporadic CRC. miR-10a-5p, miR-20a-5p, miR-642b and Let-7a-5p were associated to stroma abundance. miR-642b and Let-7a-5p were associated with to peritumoral inflammation abundance. miR-1-3p, miR-143-3p and miR-145-5p correlated with mucinous component. miR-326 correlated with tumour location (right or left sided). miR-1-3p associated with tumour grade. miR-20a-5p, miR-193b-5p, miR-320a, miR-326 and miR-642b-3p associated to tumour stage and progression. Remarkably, we also demonstrated that miR-1-3p and miR-326 expression significantly associated with patient overall survival (OS). Hierarchical clustering and bioinformatics analysis indicated that selected miRNAs could re-classify the patients and work cooperatively, modulating common target genes involved in colorectal cancer key signalling pathways. In conclusion, molecular characterization of CR primary tumours based on miRNAs could lead to more accurate patient reclassification and may be useful for efficient patient management.


Induction of Lysosome Membrane Permeabilization as a Therapeutic Strategy to Target Pancreatic Cancer Stem Cells.

  • Timothy P Cash‎ et al.
  • Cancers‎
  • 2020‎

Despite significant efforts to improve pancreatic ductal adenocarcinoma (PDAC) clinical outcomes, overall survival remains dismal. The poor response to current therapies is partly due to the existence of pancreatic cancer stem cells (PaCSCs), which are efficient drivers of PDAC tumorigenesis, metastasis and relapse. To find new therapeutic agents that could efficiently kill PaCSCs, we screened a chemical library of 680 compounds for candidate small molecules with anti-CSC activity, and identified two compounds of a specific chemical series with potent activity in vitro and in vivo against patient-derived xenograft (PDX) cultures. The anti-CSC mechanism of action of this specific chemical series was found to rely on induction of lysosomal membrane permeabilization (LMP), which is likely associated with the increased lysosomal mass observed in PaCSCs. Using the well characterized LMP-inducer siramesine as a tool molecule, we show elimination of the PaCSC population in mice implanted with tumors from two PDX models. Collectively, our approach identified lysosomal disruption as a promising anti-CSC therapeutic strategy for PDAC.


Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer.

  • Johann Gout‎ et al.
  • Gut‎
  • 2021‎

ATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC).


Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines.

  • Natalia Pajuelo-Lozano‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/β-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: