2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.

  • Sandra C Mayer‎ et al.
  • Circulation research‎
  • 2015‎

In chronic heart failure, increased adrenergic activation contributes to structural remodeling and altered gene expression. Although adrenergic signaling alters histone modifications, it is unknown, whether it also affects other epigenetic processes, including DNA methylation and its recognition.


A Homozygous Deletion of Exon 5 of KYNU Resulting from a Maternal Chromosome 2 Isodisomy (UPD2) Causes Catel-Manzke-Syndrome/VCRL Syndrome.

  • Isabel Schüle‎ et al.
  • Genes‎
  • 2021‎

Vertebral, Cardiac, Renal and Limb Defect Syndrome (VCRL), is a very rare congenital malformation syndrome. Pathogenic variants in HAAO (3-Hydroxyanthranilate 3,4-dioxygenase), NADSYN1 (NAD+ Synthetase-1) and KYNU (Kynureninase) have been identified in a handful of affected individuals. All three genes encode for enzymes essential for the NAD+ de novo synthesis pathway. Using Trio-Exome analysis and CGH array analysis in combination with long range PCR, we have identified a novel homozygous copy number variant (CNV) encompassing exon 5 of KYNU in an individual presenting with overlapping features of VCRL and Catel-Manzke Syndrome. Interestingly, only the mother, not the father carried the small deletion in a heterozygous state. High-resolution SNP array analysis subsequently delineated a maternal isodisomy of chromosome 2 (UPD2). Increased xanthurenic acid excretion in the urine confirmed the genetic diagnosis. Our findings confirm the clinical, genetic and metabolic phenotype of VCRL1, adding a novel functionally tested disease allele. We also describe the first patient with NAD+ deficiency disorder resulting from a UPD. Furthermore, we provide a comprehensive review of the current literature covering the genetic basis and pathomechanisms for VCRL and Catel-Manzke Syndrome, including possible phenotype/genotype correlations as well as genetic causes of hypoplastic left heart syndrome.


Model-driven survival prediction after congenital heart surgery.

  • Christoph Zürn‎ et al.
  • Interdisciplinary cardiovascular and thoracic surgery‎
  • 2023‎

The objective of the study was to improve postoperative risk assessment in congenital heart surgery by developing a machine-learning model based on readily available peri- and postoperative parameters.


Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing.

  • Alejandro Sifrim‎ et al.
  • Nature genetics‎
  • 2016‎

Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.


Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease.

  • Enrique Audain‎ et al.
  • PLoS genetics‎
  • 2021‎

Numerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-offspring trios. Our analysis revealed 21 genes which were significantly affected by rare CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in small cases series or show new associations with CHD. In addition, a systems level analysis revealed affected protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes and pathways.


Long-term safety and tolerability of valsartan in children aged 6 to 17 years with hypertension.

  • Randall Lou-Meda‎ et al.
  • Pediatric nephrology (Berlin, Germany)‎
  • 2019‎

The present study aimed to assess the long-term safety and tolerability of valsartan in hypertensive children aged 6-17 years, with or without chronic kidney disease (CKD).


A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects.

  • Maximilian G Posch‎ et al.
  • Journal of medical genetics‎
  • 2010‎

Ostium secundum atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD), and mutations in cardiac transcription factors, including TBX20, were identified as an underlying cause for ASDII. However, very little is known about disease penetrance in families and functional consequences of inherited TBX20 mutations.


Quantitative collagen assessment in right ventricular myectomies from patients with tetralogy of Fallot.

  • Eike M Wülfers‎ et al.
  • Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology‎
  • 2021‎

Patients with tetralogy of Fallot (TOF) are often affected by right ventricular fibrosis, which has been associated with arrhythmias. This study aimed to assess fibrosis distribution in right ventricular outflow tract (RVOT) myocardium of TOF patients to evaluate the utility of single histology-section analyses, and to explore the possibility of fibrosis quantification in unlabelled tissue by second harmonic generation imaging (SHGI) as an alternative to conventional histology-based assays.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: