Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration.

  • Kuchuan Chen‎ et al.
  • eLife‎
  • 2016‎

Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.


Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration.

  • Lucy Liu‎ et al.
  • Cell‎
  • 2015‎

Reactive oxygen species (ROS) and mitochondrial defects in neurons are implicated in neurodegenerative disease. Here, we find that a key consequence of ROS and neuronal mitochondrial dysfunction is the accumulation of lipid droplets (LD) in glia. In Drosophila, ROS triggers c-Jun-N-terminal Kinase (JNK) and Sterol Regulatory Element Binding Protein (SREBP) activity in neurons leading to LD accumulation in glia prior to or at the onset of neurodegeneration. The accumulated lipids are peroxidated in the presence of ROS. Reducing LD accumulation in glia and lipid peroxidation via targeted lipase overexpression and/or lowering ROS significantly delays the onset of neurodegeneration. Furthermore, a similar pathway leads to glial LD accumulation in Ndufs4 mutant mice with neuronal mitochondrial defects, suggesting that LD accumulation following mitochondrial dysfunction is an evolutionarily conserved phenomenon, and represents an early, transient indicator and promoter of neurodegenerative disease.


Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure.

  • San-Pin Wu‎ et al.
  • Nature communications‎
  • 2015‎

Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy.


Exome sequencing of a patient with suspected mitochondrial disease reveals a likely multigenic etiology.

  • William J Craigen‎ et al.
  • BMC medical genetics‎
  • 2013‎

The clinical features of mitochondrial disease are complex and highly variable, leading to challenges in establishing a specific diagnosis. Despite being one of the most commonly occurring inherited genetic diseases with an incidence of 1/5000, ~90% of these complex patients remain without a DNA-based diagnosis. We report our efforts to identify the pathogenetic cause for a patient with typical features of mitochondrial disease including infantile cataracts, CPEO, ptosis, progressive distal muscle weakness, and ataxia who carried a diagnosis of mitochondrial disease for over a decade.


De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring-Opitz syndrome.

  • Matthew N Bainbridge‎ et al.
  • Genome medicine‎
  • 2013‎

Molecular diagnostics can resolve locus heterogeneity underlying clinical phenotypes that may otherwise be co-assigned as a specific syndrome based on shared clinical features, and can associate phenotypically diverse diseases to a single locus through allelic affinity. Here we describe an apparently novel syndrome, likely caused by de novo truncating mutations in ASXL3, which shares characteristics with Bohring-Opitz syndrome, a disease associated with de novo truncating mutations in ASXL1.


Mitochondrial voltage-dependent anion channel gene family in Drosophila melanogaster: complex patterns of evolution, genomic organization, and developmental expression.

  • Brett H Graham‎ et al.
  • Molecular genetics and metabolism‎
  • 2005‎

Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are a family of small pore-forming proteins of the mitochondrial outer membrane found in all eukaryotes. VDACs play important roles in the regulated flux of metabolites between the cytosolic and mitochondrial compartments, energy metabolism, and apoptosis. Annotation of the genome sequence of Drosophila melanogaster revealed three genes (CG17137, CG31722-A, and CG31722-B) with homology to porin, the previously described Drosophila VDAC. Molecular analysis reveals a complex pattern of organization and expression. The genomic organization of these four genes and sequence comparisons with other insect VDAC homologs indicate that this gene family evolved through a mechanism of duplication and divergence from an ancestral VDAC gene during the radiation of the genus Drosophila. CG17137, CG31722-A, and CG31722-B are expressed in a male-specific pattern on both transcriptional and translational levels, while porin is equally expressed in both male and female flies. Additionally, CG31722-A and CG31722-B are expressed as a dicistronic transcript. Western blot analysis and immunofluorescence microscopy confirm that these proteins localize to the mitochondrion. Further expression analysis showed that CG17137 and CG31722-B are abundant in testes, while porin is ubiquitously expressed. While porin, CG17137, and CG31722-B are expressed to different degrees during embryogenesis, all of these proteins are dramatically reduced relative to cytochrome c content during larvogenesis. These studies illustrate a complex genomic organization and spatiotemporal pattern of expression for Drosophila VDACs as well as an evolutionary history consistent with either a partitioning of VDAC functions or an acquisition of novel functions among isoforms.


Loss of Nardilysin, a Mitochondrial Co-chaperone for α-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration.

  • Wan Hee Yoon‎ et al.
  • Neuron‎
  • 2017‎

We previously identified mutations in Nardilysin (dNrd1) in a forward genetic screen designed to isolate genes whose loss causes neurodegeneration in Drosophila photoreceptor neurons. Here we show that NRD1 is localized to mitochondria, where it recruits mitochondrial chaperones and assists in the folding of α-ketoglutarate dehydrogenase (OGDH), a rate-limiting enzyme in the Krebs cycle. Loss of Nrd1 or Ogdh leads to an increase in α-ketoglutarate, a substrate for OGDH, which in turn leads to mTORC1 activation and a subsequent reduction in autophagy. Inhibition of mTOR activity by rapamycin or partially restoring autophagy delays neurodegeneration in dNrd1 mutant flies. In summary, this study reveals a novel role for NRD1 as a mitochondrial co-chaperone for OGDH and provides a mechanistic link between mitochondrial metabolic dysfunction, mTORC1 signaling, and impaired autophagy in neurodegeneration.


Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging.

  • Elisabetta Flex‎ et al.
  • American journal of human genetics‎
  • 2019‎

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Untargeted Metabolomics of Slc13a5 Deficiency Reveal Critical Liver-Brain Axis for Lipid Homeostasis.

  • Sofia Milosavljevic‎ et al.
  • Metabolites‎
  • 2022‎

Though biallelic variants in SLC13A5 are known to cause severe encephalopathy, the mechanism of this disease is poorly understood. SLC13A5 protein deficiency reduces citrate transport into the cell. Downstream abnormalities in fatty acid synthesis and energy generation have been described, though biochemical signs of these perturbations are inconsistent across SLC13A5 deficiency patients. To investigate SLC13A5-related disorders, we performed untargeted metabolic analyses on the liver, brain, and serum from a Slc13a5-deficient mouse model. Metabolomic data were analyzed using the connect-the-dots (CTD) methodology and were compared to plasma and CSF metabolomics from SLC13A5-deficient patients. Mice homozygous for the Slc13a5tm1b/tm1b null allele had perturbations in fatty acids, bile acids, and energy metabolites in all tissues examined. Further analyses demonstrated that for several of these molecules, the ratio of their relative tissue concentrations differed widely in the knockout mouse, suggesting that deficiency of Slc13a5 impacts the biosynthesis and flux of metabolites between tissues. Similar findings were observed in patient biofluids, indicating altered transport and/or flux of molecules involved in energy, fatty acid, nucleotide, and bile acid metabolism. Deficiency of SLC13A5 likely causes a broader state of metabolic dysregulation than previously recognized, particularly regarding lipid synthesis, storage, and metabolism, supporting SLC13A5 deficiency as a lipid disorder.


Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion.

  • Taraka R Donti‎ et al.
  • Disease models & mechanisms‎
  • 2014‎

Mutations in subunits of succinyl-CoA synthetase/ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2(SAβgeo)), which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2(SAβgeo) homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle showed varying degrees of mtDNA depletion (20-60%). However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs) demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction.


Clinical course of sly syndrome (mucopolysaccharidosis type VII).

  • Adriana M Montaño‎ et al.
  • Journal of medical genetics‎
  • 2016‎

Mucopolysaccharidosis VII (MPS VII) is an ultra-rare disease characterised by the deficiency of β-glucuronidase (GUS). Patients' phenotypes vary from severe forms with hydrops fetalis, skeletal dysplasia and mental retardation to milder forms with fewer manifestations and mild skeletal abnormalities. Accurate assessments on the frequency and clinical characteristics of the disease have been scarce. The aim of this study was to collect such data.


Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys.

  • Hui Peng‎ et al.
  • Nature communications‎
  • 2017‎

Kidney injury initiates metabolic reprogramming in tubule cells that contributes to the development of chronic kidney disease (CKD). Exercise has been associated with beneficial effects in patients with CKD. Here we show that the induction of a myokine, irisin, improves kidney energy metabolism and prevents kidney damage. In response to kidney injury, mice with muscle-specific PGC-1α overexpression (mPGC-1α) exhibit reduced kidney damage and fibrosis. Metabolomics analysis reveals increased ATP production and improved energy metabolism in injured kidneys from mPGC-1α mice. We identify irisin as a serum factor that mediates these metabolic effects during progressive kidney injury by inhibiting TGF-β type 1 receptor. Irisin depletion from serum blunts the induction of oxygen consumption rate observed in tubule cells treated with mPGC-1α serum. In mice, recombinant irisin administration attenuates kidney damage and fibrosis and improves kidney functions. We suggest that myokine-mediated muscle-kidney crosstalk can suppress metabolic reprograming and fibrogenesis during kidney disease.


Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat Model.

  • Kerstin K Landrock‎ et al.
  • Brain research‎
  • 2018‎

In this study, we analyze the neuropathological and biochemical alterations involved in the pathogenesis of a neurodegenerative/movement disorder during different developmental stages in juvenile rats with a mutant Myosin5a (Myo5a). In mutant rats, a spontaneous autosomal recessive mutation characterized by the absence of Myo5a protein expression in the brain is associated with a syndrome of locomotor dysfunction, altered coat color, and neuroendocrine abnormalities. Myo5a encodes a myosin motor protein required for transport and proper distribution of subcellular organelles in somatodendritic processes in neurons. Here we report marked hyperphosphorylation of alpha-synuclein and tau, as well as region-specific buildup of the autotoxic dopamine metabolite, 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), related to decreased aldehyde dehydrogenases activity and neurodegeneration in mutant rats. Alpha-synuclein accumulation in mitochondria of dopaminergic neurons is associated with impaired enzymatic respiratory complex I and IV activity. The behavioral and biochemical lesions progress after 15 days postnatal, and by 30-40 days the animals must be euthanized because of neurological impairment. Based on the obtained results, we propose a pleiotropic pathogenesis that links the Myo5a gene mutation to deficient neuronal development and progressive neurodegeneration. This potential model of a neurodevelopmental disorder with neurodegeneration and motor deficits may provide further insight into molecular motors and their associated proteins responsible for altered neurogenesis and neuronal disease pathogenesis.


Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans.

  • Vafa Bayat‎ et al.
  • PLoS biology‎
  • 2012‎

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.


Current molecular diagnostic algorithm for mitochondrial disorders.

  • Lee-Jun C Wong‎ et al.
  • Molecular genetics and metabolism‎
  • 2010‎

Mitochondrial respiratory chain disorders (RCD) are a group of genetically and clinically heterogeneous diseases, due in part to the biochemical complexity of mitochondrial respiration and the fact that two genomes, one mitochondrial and one nuclear, encode the components of the respiratory chain. Because of the large number of genes involved, attempts to classify mitochondrial RCD incorporate clinical, biochemical, and histological criteria, in addition to DNA-based molecular diagnostic testing. While molecular testing is widely viewed as definitive, confirmation of the diagnosis by molecular methods often remains a challenge because of the large number of genes, the two genome complexity and the varying proportions of pathogenic mitochondrial DNA (mtDNA) molecules in a patient, a concept termed heteroplasmy. The selection of genes to be analyzed depends on the family history and clinical, biochemical, histopathological, and imaging results, as well as the availability of different tissues for analysis. Screening of common point mutations and large deletions in mtDNA is typically the first step. In cases where tissue-specific, recognizable clinical syndromes or characteristic RC complex deficiencies and histochemical abnormalities are observed, direct sequencing of the specific causative nuclear gene(s) can be performed on white blood cell DNA. Measurement of mtDNA content in affected tissues such as muscle and liver allows screening for mtDNA depletion syndromes. The ever-expanding list of known disease-causing genes will undoubtedly improve diagnostic accuracy and genetic counseling.


Lysosomal Signaling Promotes Longevity by Adjusting Mitochondrial Activity.

  • Prasanna V Ramachandran‎ et al.
  • Developmental cell‎
  • 2019‎

Lysosomes and mitochondria are both crucial cellular organelles for metabolic homeostasis and organism health. However, mechanisms linking their metabolic activities to promote organism longevity remain poorly understood. We discovered that the induction of specific lysosomal signaling mediated by a LIPL-4 lysosomal acid lipase and its lipid chaperone LBP-8 increases mitochondrial ß-oxidation to reduce lipid storage and promote longevity in Caenorhabditis elegans. We further discovered that increased mitochondrial ß-oxidation reduces mitochondrial electron transport chain complex II activity, contributing to the induction of reactive oxygen species in mitochondria (mtROS) and the longevity effect conferred by LIPL-4-LBP-8 signaling. Moreover, by activating the JUN-1 transcription factor downstream of mtROS, the LIPL-4-LBP-8 signaling pathway induces antioxidant targets and oxidative stress tolerance. Together, these results reveal regulatory mechanisms by which lysosomal signaling triggers adjustments in mitochondrial activity and suggest the significance of these metabolic adjustments for improving metabolic fitness, redox homeostasis, and longevity.


Mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) plus associated with a novel de novo mutation (m.8969G>A) in the mitochondrial encoded ATP6 gene.

  • Lindsay C Burrage‎ et al.
  • Molecular genetics and metabolism‎
  • 2014‎

Mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) is a rare mitochondrial disorder that has previously been associated with mutations in PUS1 and YARS2. In the present report, we describe a 6-year old male with an MLASA plus phenotype. This patient had features of MLASA in the setting of developmental delay, sensorineural hearing loss, epilepsy, agenesis of the corpus callosum, failure to thrive, and stroke-like episodes. Sequencing of the mitochondrial genome identified a novel de novo, heteroplasmic mutation in the mitochondrial DNA (mtDNA) encoded ATP6 gene (m.8969G>A, p.S148N). Whole exome sequencing did not identify mutations or variants in PUS1 or YARS2 or any known nuclear genes that could affect mitochondrial function and explain this phenotype. Studies of fibroblasts derived from the patient revealed a decrease in oligomycin-sensitive respiration, a finding which is consistent with a complex V defect. Thus, this mutation in MT-ATP6 may represent the first mtDNA point mutation associated with the MLASA phenotype.


Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

  • Manish Jaiswal‎ et al.
  • PLoS biology‎
  • 2015‎

Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.


Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coA dehydrogenase (VLCAD) deficiency in the United States.

  • Marcus J Miller‎ et al.
  • Molecular genetics and metabolism‎
  • 2015‎

Very long chain acyl-coA dehydrogenase deficiency (VLCADD) is an autosomal recessive inborn error of fatty acid oxidation detected by newborn screening (NBS). Follow-up molecular analyses are often required to clarify VLCADD-suggestive NBS results, but to date the outcome of these studies are not well described for the general screen-positive population. In the following study, we report the molecular findings for 693 unrelated patients that sequentially received Sanger sequence analysis of ACADVL as a result of a positive NBS for VLCADD. Highlighting the variable molecular underpinnings of this disorder, we identified 94 different pathogenic ACADVL variants (40 novel), as well as 134 variants of unknown clinical significance (VUSs). Evidence for the pathogenicity of a subset of recurrent VUSs was provided using multiple in silico analyses. Surprisingly, the most frequent finding in our cohort was carrier status, 57% all individuals had a single pathogenic variant or VUS. This result was further supported by follow-up array and/or acylcarnitine analysis that failed to provide evidence of a second pathogenic allele. Notably, exon-targeted array analysis of 131 individuals screen positive for VLCADD failed to identify copy number changes in ACADVL thus suggesting this test has a low yield in the setting of NBS follow-up. While no genotype was common, the c.848T>C (p.V283A) pathogenic variant was clearly the most frequent; at least one copy was found in ~10% of all individuals with a positive NBS. Clinical and biochemical data for seven unrelated patients homozygous for the p.V283A allele suggests that it results in a mild phenotype that responds well to standard treatment, but hypoglycemia can occur. Collectively, our data illustrate the molecular heterogeneity of VLCADD and provide novel insight into the outcomes of NBS for this disorder.


The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism.

  • Arnaud Besse‎ et al.
  • Cell metabolism‎
  • 2015‎

ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects' brains as well as decreased mtDNA levels in subjects' fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: