Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor.

  • June E Pais‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

The heat-shock protein 70 (Hsp70)-based import motor, associated with the translocon on the matrix side of the mitochondrial inner membrane, drives translocation of proteins via cycles of binding and release. Stimulation of Hsp70's ATPase activity by the translocon-associated J-protein Pam18 is critical for this process. Pam18 forms a heterodimer with the structurally related protein Pam16, via their J-type domains. This interaction has been proposed to perform a critical regulatory function, inhibiting the ATPase stimulatory activity of Pam18. Using biochemical and genetic assays, we tested this hypothesis by assessing the in vivo function of Pam18 variants having altered abilities to stimulate Hsp70's ATPase activity. The observed pattern of genetic interactions was opposite from that predicted if the heterodimer serves an inhibitory function; instead the pattern was consistent with that of mutations known to cause reduction in the stability of the heterodimer. Analysis of a previously uncharacterized region of Pam16 revealed its requirement for formation of an active Pam18:Pam16 complex able to stimulate Hsp70's ATPase activity. Together, our data are consistent with the idea that Pam18 and Pam16 form a stable heterodimer and that the critical role of the Pam18:Pam16 interaction is the physical tethering of Pam18 to the translocon via its interaction with Pam16.


Biochemical Convergence of Mitochondrial Hsp70 System Specialized in Iron-Sulfur Cluster Biogenesis.

  • Malgorzata Kleczewska‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Mitochondria play a central role in the biogenesis of iron-sulfur cluster(s) (FeS), protein cofactors needed for many cellular activities. After assembly on scaffold protein Isu, the cluster is transferred onto a recipient apo-protein. Transfer requires Isu interaction with an Hsp70 chaperone system that includes a dedicated J-domain protein co-chaperone (Hsc20). Hsc20 stimulates Hsp70's ATPase activity, thus stabilizing the critical Isu-Hsp70 interaction. While most eukaryotes utilize a multifunctional mitochondrial (mt)Hsp70, yeast employ another Hsp70 (Ssq1), a product of mtHsp70 gene duplication. Ssq1 became specialized in FeS biogenesis, recapitulating the process in bacteria, where specialized Hsp70 HscA cooperates exclusively with an ortholog of Hsc20. While it is well established that Ssq1 and HscA converged functionally for FeS transfer, whether these two Hsp70s possess similar biochemical properties was not known. Here, we show that overall HscA and Ssq1 biochemical properties are very similar, despite subtle differences being apparent - the ATPase activity of HscA is stimulated to a somewhat higher levels by Isu and Hsc20, while Ssq1 has a higher affinity for Isu and for Hsc20. HscA/Ssq1 are a unique example of biochemical convergence of distantly related Hsp70s, with practical implications, crossover experimental results can be combined, facilitating understanding of the FeS transfer process.


During FeS cluster biogenesis, ferredoxin and frataxin use overlapping binding sites on yeast cysteine desulfurase Nfs1.

  • Marta A Uzarska‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron-sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1-Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.


Co-evolution-driven switch of J-protein specificity towards an Hsp70 partner.

  • Sebastian Pukszta‎ et al.
  • EMBO reports‎
  • 2010‎

Molecular mechanisms by which protein-protein interactions are preserved or lost after gene duplication are not understood. Taking advantage of the well-studied yeast mtHsp70:J-protein molecular chaperone system, we considered whether changes in partner proteins accompanied specialization of gene duplicates. Here, we report that existence of the Hsp70 Ssq1, which arose by duplication of the gene encoding multifunction mtHsp70 and specializes in iron-sulphur cluster biogenesis, correlates with functional and structural changes in the J domain of its J-protein partner Jac1. All species encoding this shorter alternative version of the J domain share a common ancestry, suggesting that all short JAC1 proteins arose from a single deletion event. Construction of a variant that extended the length of the J domain of a 'short' Jac1 enhanced its ability to partner with multifunctional Hsp70. Our data provide a causal link between changes in the J protein partner and specialization of duplicate Hsp70.


Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis.

  • Brenda Schilke‎ et al.
  • Current biology : CB‎
  • 2006‎

Biogenesis of Fe-S clusters is an essential process [1]. In both Escherichia coli and Saccharomyces cerevisiae, insertion of clusters into an apoprotein requires interaction between a scaffold protein on which clusters are assembled and a molecular chaperone system--an unusually specialized mitochondrial Hsp70 (mtHsp70) and its J protein cochaperone [2]. It is generally assumed that mitochondria inherited their Fe-S cluster assembly machinery from prokaryotes via the endosymbiosis of a bacterium that led to formation of mitochondria. Indeed, phylogenetic analyses demonstrated that the S. cerevisiae J protein, Jac1, and the scaffold, Isu, are orthologous to their bacterial counterparts [3, 4]. However, our analyses indicate that the specialized mtHsp70, Ssq1, is only present in a subset of fungi; most eukaryotes have a single mtHsp70, Ssc1. We propose that an Hsp70 having a role limited to Fe-S cluster biogenesis arose twice during evolution. In the fungal lineage, the gene encoding multifunctional mtHsp70, Ssc1, was duplicated, giving rise to specialized Ssq1. Therefore, Ssq1 is not orthologous to the specialized Hsp70 from E. coli (HscA), but shares a striking level of convergence at the biochemical level. Thus, in the vast majority of eukaryotes, Jac1 and Isu function with the single, multifunctional mtHsp70 in Fe-S cluster biogenesis.


Two-step mechanism of J-domain action in driving Hsp70 function.

  • Bartlomiej Tomiczek‎ et al.
  • PLoS computational biology‎
  • 2020‎

J-domain proteins (JDPs), obligatory Hsp70 cochaperones, play critical roles in protein homeostasis. They promote key allosteric transitions that stabilize Hsp70 interaction with substrate polypeptides upon hydrolysis of its bound ATP. Although a recent crystal structure revealed the physical mode of interaction between a J-domain and an Hsp70, the structural and dynamic consequences of J-domain action once bound and how Hsp70s discriminate among its multiple JDP partners remain enigmatic. We combined free energy simulations, biochemical assays and evolutionary analyses to address these issues. Our results indicate that the invariant aspartate of the J-domain perturbs a conserved intramolecular Hsp70 network of contacts that crosses domains. This perturbation leads to destabilization of the domain-domain interface-thereby promoting the allosteric transition that triggers ATP hydrolysis. While this mechanistic step is driven by conserved residues, evolutionarily variable residues are key to initial JDP/Hsp70 recognition-via electrostatic interactions between oppositely charged surfaces. We speculate that these variable residues allow an Hsp70 to discriminate amongst JDP partners, as many of them have coevolved. Together, our data points to a two-step mode of J-domain action, a recognition stage followed by a mechanistic stage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: