Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

RPL24: a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cancer cell growth.

  • Kathleen A Wilson-Edell‎ et al.
  • Oncotarget‎
  • 2014‎

Partial loss of large ribosomal subunit protein 24 (RPL24) function is known to protect mice against Akt or Myc-driven cancers, in part via translational inhibition of a subset of cap(eIF4E)-dependently translated mRNAs. The role of RPL24 in human malignancies is unknown. By analyzing a public dataset of matched human breast cancers and normal mammary tissue, we found that breast cancers express significantly more RPL24 than matched normal breast samples. Depletion of RPL24 in breast cancer cells by >70% reduced cell viability by 80% and decreased protein expression of the eIF4E-dependently translated proteins cyclin D1 (75%), survivin (46%) and NBS1 (30%) without altering GAPDH or beta-tubulin levels. RPL24 knockdown also reduced 80S subunit levels relative to 40S and 60S levels. These effects on expression of eIF4E-dependent proteins and ribosome assembly were mimicked by 2-24 h treatment with the pan-HDACi, trichostatin A (TSA), which induced acetylation of 15 different polysome-associated proteins including RPL24. Furthermore, HDAC6-selective inhibition or HDAC6 knockdown induced ribosomal protein acetylation. Via mass spectrometry, we found that 60S-associated, but not, polysome-associated, RPL24 undergoes HDACi-induced acetylation on K27. Thus, RPL24 K27 acetylation may play a role in ribosome assembly. These findings point toward a novel acetylation-dependent polysome assembly mechanism regulating tumorigenesis.


Iron promotes protein insolubility and aging in C. elegans.

  • Ida M Klang‎ et al.
  • Aging‎
  • 2014‎

Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity ofCaenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation.


MS1 Peptide Ion Intensity Chromatograms in MS2 (SWATH) Data Independent Acquisitions. Improving Post Acquisition Analysis of Proteomic Experiments.

  • Matthew J Rardin‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2015‎

Quantitative analysis of discovery-based proteomic workflows now relies on high-throughput large-scale methods for identification and quantitation of proteins and post-translational modifications. Advancements in label-free quantitative techniques, using either data-dependent or data-independent mass spectrometric acquisitions, have coincided with improved instrumentation featuring greater precision, increased mass accuracy, and faster scan speeds. We recently reported on a new quantitative method called MS1 Filtering (Schilling et al. (2012) Mol. Cell. Proteomics 11, 202-214) for processing data-independent MS1 ion intensity chromatograms from peptide analytes using the Skyline software platform. In contrast, data-independent acquisitions from MS2 scans, or SWATH, can quantify all fragment ion intensities when reference spectra are available. As each SWATH acquisition cycle typically contains an MS1 scan, these two independent label-free quantitative approaches can be acquired in a single experiment. Here, we have expanded the capability of Skyline to extract both MS1 and MS2 ion intensity chromatograms from a single SWATH data-independent acquisition in an Integrated Dual Scan Analysis approach. The performance of both MS1 and MS2 data was examined in simple and complex samples using standard concentration curves. Cases of interferences in MS1 and MS2 ion intensity data were assessed, as were the differentiation and quantitation of phosphopeptide isomers in MS2 scan data. In addition, we demonstrated an approach for optimization of SWATH m/z window sizes to reduce interferences using MS1 scans as a guide. Finally, a correlation analysis was performed on both MS1 and MS2 ion intensity data obtained from SWATH acquisitions on a complex mixture using a linear model that automatically removes signals containing interferences. This work demonstrates the practical advantages of properly acquiring and processing MS1 precursor data in addition to MS2 fragment ion intensity data in a data-independent acquisition (SWATH), and provides an approach to simultaneously obtain independent measurements of relative peptide abundance from a single experiment.


Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma.

  • Susan E Abbatiello‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2015‎

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae.

  • Deborah M B Post‎ et al.
  • PloS one‎
  • 2017‎

Neisseria gonorrhoeae, the causative agent of gonorrhea, has a number of factors known to contribute to pathogenesis; however, a full understanding of these processes and their regulation has proven to be elusive. Post-translational modifications (PTMs) of bacterial proteins are now recognized as one mechanism of protein regulation. In the present study, Western blot analyses, with an anti-acetyl-lysine antibody, indicated that a large number of gonococcal proteins are post-translationally modified. Previous work has shown that Nε-lysine acetylation can occur non-enzymatically with acetyl-phosphate (AcP) as the acetyl donor. In the current study, an acetate kinase mutant (1291ackA), which accumulates AcP, was generated in N. gonorrhoeae. Broth cultures of N. gonorrhoeae 1291wt and 1291ackA were grown, proteins extracted and digested, and peptides containing acetylated-lysines (K-acetyl) were affinity-enriched from both strains. Mass spectrometric analyses of these samples identified a total of 2686 unique acetylation sites. Label-free relative quantitation of the K-acetyl peptides derived from the ackA and wild-type (wt) strains demonstrated that 109 acetylation sites had an ackA/wt ratio>2 and p-values <0.05 in at least 2/3 of the biological replicates and were designated as "AckA-dependent". Regulated K-acetyl sites were found in ribosomal proteins, central metabolism proteins, iron acquisition and regulation proteins, pilus assembly and regulation proteins, and a two-component response regulator. Since AckA is part of a metabolic pathway, comparative growth studies of the ackA mutant and wt strains were performed. The mutant showed a growth defect under aerobic conditions, an inability to grow anaerobically, and a defect in biofilm maturation. In conclusion, the current study identified AckA-dependent acetylation sites in N. gonorrhoeae and determined that these sites are found in a diverse group of proteins. This work lays the foundation for future studies focusing on specific acetylation sites that may have relevance in gonococcal pathogenesis and metabolism.


Characterization of Inner and Outer Membrane Proteins from Francisella tularensis Strains LVS and Schu S4 and Identification of Potential Subunit Vaccine Candidates.

  • Deborah M B Post‎ et al.
  • mBio‎
  • 2017‎

Francisella tularensis is the causative agent of tularemia and a potential bioterrorism agent. In the present study, we isolated, identified, and quantified the proteins present in the membranes of the virulent type A strain, Schu S4, and the attenuated type B strain, LVS (live vaccine strain). Spectral counting of mass spectrometric data showed enrichment for membrane proteins in both strains. Mice vaccinated with whole LVS membranes encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing the adjuvant polyinosinic-polycytidylic acid [poly(I·C)] showed significant protection against a challenge with LVS compared to the results seen with naive mice or mice vaccinated with either membranes or poly(I·C) alone. The PLGA-encapsulated Schu S4 membranes with poly(I·C) alone did not significantly protect mice from a lethal intraperitoneal challenge with Schu S4; however, this vaccination strategy provided protection from LVS challenge. Mice that received the encapsulated Schu S4 membranes followed by a booster of LVS bacteria showed significant protection with respect to a lethal Schu S4 challenge compared to control mice. Western blot analyses of the sera from the Schu S4-vaccinated mice that received an LVS booster showed four immunoreactive bands. One of these bands from the corresponding one-dimensional (1D) SDS-PAGE experiment represented capsule. The remaining bands were excised, digested with trypsin, and analyzed using mass spectrometry. The most abundant proteins present in these immunoreactive samples were an outer membrane OmpA-like protein, FopA; the type IV pilus fiber building block protein; a hypothetical membrane protein; and lipoproteins LpnA and Lpp3. These proteins should serve as potential targets for future recombinant protein vaccination studies.IMPORTANCE The low infectious dose, the high potential mortality/morbidity rates, and the ability to be disseminated as an aerosol make Francisella tularensis a potential agent for bioterrorism. These characteristics led the Centers for Disease Control (CDC) to classify F. tularensis as a Tier 1 pathogen. Currently, there is no vaccine approved for general use in the United States.


Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry.

  • Ben C Collins‎ et al.
  • Nature communications‎
  • 2017‎

Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.


Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis.

  • Michael A Apicella‎ et al.
  • PloS one‎
  • 2010‎

Capsular polysaccharides are important factors in bacterial pathogenesis and have been the target of a number of successful vaccines. Francisella tularensis has been considered to express a capsular antigen but none has been isolated or characterized. We have developed a monoclonal antibody, 11B7, which recognizes the capsular polysaccharide of F. tularensis migrating on Western blot as a diffuse band between 100 kDa and 250 kDa. The capsule stains poorly on SDS-PAGE with silver stain but can be visualized using ProQ Emerald glycoprotein stain. The capsule appears to be highly conserved among strains of F. tularensis as antibody 11B7 bound to the capsule of 14 of 14 F. tularensis type A and B strains on Western blot. The capsular material can be isolated essentially free of LPS, is phenol and proteinase K resistant, ethanol precipitable and does not dissociate in sodium dodecyl sulfate. Immunoelectron microscopy with colloidal gold demonstrates 11B7 circumferentially staining the surface of F. tularensis which is typical of a polysaccharide capsule. Mass spectrometry, compositional analysis and NMR indicate that the capsule is composed of a polymer of the tetrasaccharide repeat, 4)-alpha-D-GalNAcAN-(1->4)-alpha-D-GalNAcAN-(1->3)-beta-D-QuiNAc-(1->2)-beta-D-Qui4NFm-(1-, which is identical to the previously described F. tularensis O-antigen subunit. This indicates that the F. tularensis capsule can be classified as an O-antigen capsular polysaccharide. Our studies indicate that F. tularensis O-antigen glycosyltransferase mutants do not make a capsule. An F. tularensis acyltransferase and an O-antigen polymerase mutant had no evidence of an O-antigen but expressed a capsular antigen. Passive immunization of BALB/c mice with 75 microg of 11B7 protected against a 150 fold lethal challenge of F. tularensis LVS. Active immunization of BALB/c mice with 10 microg of capsule showed a similar level of protection. These studies demonstrate that F. tularensis produces an O-antigen capsule that may be the basis of a future vaccine.


Phosphoprotein secretome of tumor cells as a source of candidates for breast cancer biomarkers in plasma.

  • Anna M Zawadzka‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2014‎

Breast cancer is a heterogeneous disease whose molecular diversity is not well reflected in clinical and pathological markers used for prognosis and treatment selection. As tumor cells secrete proteins into the extracellular environment, some of these proteins reach circulation and could become suitable biomarkers for improving diagnosis or monitoring response to treatment. As many signaling pathways and interaction networks are altered in cancerous tissues by protein phosphorylation, changes in the secretory phosphoproteome of cancer tissues could reflect both disease progression and subtype. To test this hypothesis, we compared the phosphopeptide-enriched fractions obtained from proteins secreted into conditioned media (CM) derived from five luminal and five basal type breast cancer cell lines using label-free quantitative mass spectrometry. Altogether over 5000 phosphosites derived from 1756 phosphoproteins were identified, several of which have the potential to qualify as phosphopeptide plasma biomarker candidates for the more aggressive basal and also the luminal-type breast cancers. The analysis of phosphopeptides from breast cancer patient plasma and controls allowed us to construct a discovery list of phosphosites under rigorous collection conditions, and second to qualify discovery candidates generated from the CM studies. Indeed, a set of basal-specific phosphorylation CM site candidates derived from IBP3, CD44, OPN, FSTL3, LAMB1, and STC2, and luminal-specific candidates derived from CYTC and IBP5 were selected and, based on their presence in plasma, quantified across all cell line CM samples using Skyline MS1 intensity data. Together, this approach allowed us to assemble a set of novel cancer subtype specific phosphopeptide candidates for subsequent biomarker verification and clinical validation.


Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

  • Steven A Bullard‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level.


Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits.

  • Sang-Won Min‎ et al.
  • Nature medicine‎
  • 2015‎

Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), are neurodegenerative diseases in which tau fibrils accumulate. Recent evidence supports soluble tau species as the major toxic species. How soluble tau accumulates and causes neurodegeneration remains unclear. Here we identify tau acetylation at Lys174 (K174) as an early change in AD brains and a critical determinant in tau homeostasis and toxicity in mice. The acetyl-mimicking mutant K174Q slows tau turnover and induces cognitive deficits in vivo. Acetyltransferase p300-induced tau acetylation is inhibited by salsalate and salicylate, which enhance tau turnover and reduce tau levels. In the PS19 transgenic mouse model of FTD, administration of salsalate after disease onset inhibited p300 activity, lowered levels of total tau and tau acetylated at K174, rescued tau-induced memory deficits and prevented hippocampal atrophy. The tau-lowering and protective effects of salsalate were diminished in neurons expressing K174Q tau. Targeting tau acetylation could be a new therapeutic strategy against human tauopathies.


Panorama: a targeted proteomics knowledge base.

  • Vagisha Sharma‎ et al.
  • Journal of proteome research‎
  • 2014‎

Panorama is a web application for storing, sharing, analyzing, and reusing targeted assays created and refined with Skyline,1 an increasingly popular Windows client software tool for targeted proteomics experiments. Panorama allows laboratories to store and organize curated results contained in Skyline documents with fine-grained permissions, which facilitates distributed collaboration and secure sharing of published and unpublished data via a web-browser interface. It is fully integrated with the Skyline workflow and supports publishing a document directly to a Panorama server from the Skyline user interface. Panorama captures the complete Skyline document information content in a relational database schema. Curated results published to Panorama can be aggregated and exported as chromatogram libraries. These libraries can be used in Skyline to pick optimal targets in new experiments and to validate peak identification of target peptides. Panorama is open-source and freely available. It is distributed as part of LabKey Server,2 an open source biomedical research data management system. Laboratories and organizations can set up Panorama locally by downloading and installing the software on their own servers. They can also request freely hosted projects on https://panoramaweb.org , a Panorama server maintained by the Department of Genome Sciences at the University of Washington.


N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans.

  • Mark Lucanic‎ et al.
  • Nature‎
  • 2011‎

Dietary restriction is a robust means of extending adult lifespan and postponing age-related disease in many species, including yeast, nematode worms, flies and rodents. Studies of the genetic requirements for lifespan extension by dietary restriction in the nematode Caenorhabditis elegans have implicated a number of key molecules in this process, including the nutrient-sensing target of rapamycin (TOR) pathway and the Foxa transcription factor PHA-4 (ref. 7). However, little is known about the metabolic signals that coordinate the organismal response to dietary restriction and maintain homeostasis when nutrients are limited. The endocannabinoid system is an excellent candidate for such a role given its involvement in regulating nutrient intake and energy balance. Despite this, a direct role for endocannabinoid signalling in dietary restriction or lifespan determination has yet to be demonstrated, in part due to the apparent absence of endocannabinoid signalling pathways in model organisms that are amenable to lifespan analysis. N-acylethanolamines (NAEs) are lipid-derived signalling molecules, which include the mammalian endocannabinoid arachidonoyl ethanolamide. Here we identify NAEs in C. elegans, show that NAE abundance is reduced under dietary restriction and that NAE deficiency is sufficient to extend lifespan through a dietary restriction mechanism requiring PHA-4. Conversely, dietary supplementation with the nematode NAE eicosapentaenoyl ethanolamide not only inhibits dietary-restriction-induced lifespan extension in wild-type worms, but also suppresses lifespan extension in a TOR pathway mutant. This demonstrates a role for NAE signalling in ageing and indicates that NAEs represent a signal that coordinates nutrient status with metabolic changes that ultimately determine lifespan.


Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan.

  • Pedro Reis-Rodrigues‎ et al.
  • Aging cell‎
  • 2012‎

While it is generally recognized that misfolding of specific proteins can cause late-onset disease, the contribution of protein aggregation to the normal aging process is less well understood. To address this issue, a mass spectrometry-based proteomic analysis was performed to identify proteins that adopt sodium dodecyl sulfate (SDS)-insoluble conformations during aging in Caenorhabditis elegans. SDS-insoluble proteins extracted from young and aged C. elegans were chemically labeled by isobaric tagging for relative and absolute quantification (iTRAQ) and identified by liquid chromatography and mass spectrometry. Two hundred and three proteins were identified as being significantly enriched in an SDS-insoluble fraction in aged nematodes and were largely absent from a similar protein fraction in young nematodes. The SDS-insoluble fraction in aged animals contains a diverse range of proteins including a large number of ribosomal proteins. Gene ontology analysis revealed highly significant enrichments for energy production and translation functions. Expression of genes encoding insoluble proteins observed in aged nematodes was knocked down using RNAi, and effects on lifespan were measured. 41% of genes tested were shown to extend lifespan after RNAi treatment, compared with 18% in a control group of genes. These data indicate that genes encoding proteins that become insoluble with age are enriched for modifiers of lifespan. This demonstrates that proteomic approaches can be used to identify genes that modify lifespan. Finally, these observations indicate that the accumulation of insoluble proteins with diverse functions may be a general feature of aging.


Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs.

  • Nan Bai‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."


Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH).

  • Jesse G Meyer‎ et al.
  • Journal of the American Society for Mass Spectrometry‎
  • 2016‎

Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy. Graphical Abstract ᅟ.


The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites.

  • Alaa AbouElfetouh‎ et al.
  • MicrobiologyOpen‎
  • 2015‎

N(ε) -lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ε-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent N(ε) -lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD(+) -dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli.


Plasma proteomic associations with genetics and health in the UK Biobank.

  • Benjamin B Sun‎ et al.
  • Nature‎
  • 2023‎

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry.

  • Deborah M B Post‎ et al.
  • BMC microbiology‎
  • 2014‎

Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either "light" (L) isoleucine or "heavy" (H) (13)C6-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence.


Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance.

  • Cecile Vernochet‎ et al.
  • Cell metabolism‎
  • 2012‎

Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated a mouse model with disruption of the mitochondrial transcription factor A (TFAM) specifically in fat. F-TFKO adipose tissue exhibit decreased mtDNA copy number, altered levels of proteins of the electron transport chain, and perturbed mitochondrial function with decreased complex I activity and greater oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: