Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Mouse models of atherosclerosis in translational research.

  • Iqra Ilyas‎ et al.
  • Trends in pharmacological sciences‎
  • 2022‎

Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.


Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1) knock out mice.

  • Guoyong Yin‎ et al.
  • PloS one‎
  • 2014‎

G protein coupled receptor kinase 2 (GRK2) interacting protein-1 (GIT1), is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO) mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT) and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31) were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.


Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling.

  • Vyacheslav A Korshunov‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association. Methods and Results We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/-) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/- males compared with Npr2+/- females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/- mice. Conclusions We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.


Strain-selective efficacy of sacubitril/valsartan on carotid fibrosis in response to injury in two inbred mouse strains.

  • Vyacheslav A Korshunov‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Sacubitril/valsartan (Sac/val) is more effective than valsartan in lowering BP and mortality in patients with heart failure. Here, we proposed that Sac/val treatment would be more effective in preventing pathological vascular remodelling in 129X1/SvJ (129X1), than in C57BL/6J (B6) inbred mice.


Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms.

  • Kimio Satoh‎ et al.
  • Nature medicine‎
  • 2009‎

Inflammation and oxidative stress are pathogenic mediators of many diseases, but molecules that could be therapeutic targets remain elusive. Inflammation and matrix degradation in the vasculature are crucial for abdominal aortic aneurysm (AAA) formation. Cyclophilin A (CypA, encoded by Ppia) is highly expressed in vascular smooth muscle cells (VSMCs), is secreted in response to reactive oxygen species (ROS) and promotes inflammation. Using the angiotensin II (AngII)-induced AAA model in Apoe-/- mice, we show that Apoe-/-Ppia-/- mice are completely protected from AngII-induced AAA formation, in contrast to Apoe-/-Ppia+/+ mice. Apoe-/-Ppia-/- mice show decreased inflammatory cytokine expression, elastic lamina degradation and aortic expansion. These features were not altered by reconstitution of bone marrow cells from Ppia+/+ mice. Mechanistic studies showed that VSMC-derived intracellular and extracellular CypA are required for ROS generation and matrix metalloproteinase-2 activation. These data define a previously undescribed role for CypA in AAA formation and suggest CypA as a new target for treating cardiovascular disease.


p90 ribosomal S6 kinase regulates activity of the renin-angiotensin system: a pathogenic mechanism for ischemia-reperfusion injury.

  • Xi Shi‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2011‎

Increasing evidence suggests that local renin-angiotensin system (RAS) plays an important role in cardiac diseases. Elevated p90 ribosomal S6 kinase (RSK) activity has been observed in diabetic animal, as well as in human failing hearts. We hypothesize that RSK mediates cardiac dysfunction by up regulating local RAS signaling. In the present study, we show that the prorenin mRNA level was significantly increased (~5.6-fold) in transgenic mouse hearts with cardiac specific expression of RSK (RSK-Tg). The RSK-Tg mice were more vulnerable to ischemia/reperfusion (I/R) injury than non-transgenic littermate controls (NLC). To further understand the direct contribution of cardiac renin to I/R injury, we used a Langendorff system to evaluate the effect of renin inhibition by aliskiren in RSK-Tg mouse hearts. In the vehicle-perfused group, I/R significantly decreased left ventricular developed pressure (LVDP) in RSK-Tg hearts compared to NLC (7% versus 60% of the baseline). However, aliskiren perfusion significantly increased LVDP in RSK-Tg (7% to 61%, p<0.01) but not in NLC hearts (60% to 62%, n.s.). The protective effect of aliskiren in RSK-Tg hearts was further demonstrated with positive (contraction) dp/dt (6.5% to 63%, p<0.01) and rate pressure product (RPP) (5% to 51%, p<0.01). Moreover, aliskiren significantly decreased I/R induced infarction in RSK-Tg (60% to 32%, p<0.01), compared to NLC hearts (37% to 32%, n.s.). These results suggest that RSK plays a crucial role in regulating local cardiac renin, which contributes to I/R induced cardiac injury and dysfunction. Thus, renin inhibition may provide an alternative therapeutic strategy under conditions of increased RAS.


Oligonucleotide Microarrays Identified Potential Regulatory Genes Related to Early Outward Arterial Remodeling Induced by Tissue Plasminogen Activator.

  • Olga Plekhanova‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Constrictive vascular remodeling limiting blood flow, as well as compensatory outward remodeling, has been observed in many cardiovascular diseases; however, the underlying mechanisms regulating the remodeling response of the vessels remain unclear. Plasminogen activators (PA) are involved in many of the processes of vascular remodeling. We have shown previously that increased levels of tissue-type PA (tPA) contributes to outward vascular remodeling. To elucidate the mechanisms involved in the induction of outward remodeling we characterized changes in the expression profiles of 8799 genes in injured rat carotid arteries 1 and 4 days after recombinant tPA treatment compared to vehicle. Periadventitial tPA significantly increased lumen size and vessel area, encompassed by the external elastic lamina, at both one and 4 days after treatment. Among 41 differentially expressed known genes 1 day after tPA application, five genes were involved in gene transcription, five genes were related to the regulation of vascular tone [for example, thromboxane A2 receptor (D32080) or non-selective-type endothelin receptor (S65355)], and eight genes were identified as participating in vascular innervation [for example, calpain (D14478) or neural cell adhesion molecule L1 (X59149)]. Four days after injury in tPA-treated arteries, four genes, regulating vascular tone, were differentially expressed. Thus, tPA promotes outward arterial remodeling after injury, at least in part, by regulating expression of genes in the vessel wall related to function of the nervous system and vascular tone.


Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice.

  • Patrizia Nigro‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

Cyclophilin A (CyPA; encoded by Ppia) is a ubiquitously expressed protein secreted in response to inflammatory stimuli. CyPA stimulates vascular smooth muscle cell migration and proliferation, endothelial cell adhesion molecule expression, and inflammatory cell chemotaxis. Given these activities, we hypothesized that CyPA would promote atherosclerosis. Apolipoprotein E-deficient (Apoe(-/-)) mice fed a high-cholesterol diet for 16 wk developed more severe atherosclerosis compared with Apoe(-/-)Ppia(-/-) mice. Moreover, CyPA deficiency was associated with decreased low-density lipoprotein uptake, VCAM-1 (vascular cell adhesion molecule 1) expression, apoptosis, and increased eNOS (endothelial nitric oxide synthase) expression. To understand the vascular role of CyPA in atherosclerosis development, bone marrow (BM) cell transplantation was performed. Atherosclerosis was greater in Apoe(-/-) mice compared with Apoe(-/-)Ppia(-/-) mice after reconstitution with CyPA(+/+) BM cells, indicating that vascular-derived CyPA plays a crucial role in the progression of atherosclerosis. These data define a role for CyPA in atherosclerosis and suggest CyPA as a target for cardiovascular therapies.


PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation.

  • Kyung-Sun Heo‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Atherosclerosis is readily observed in regions of blood vessels where disturbed blood flow (d-flow) is known to occur. A positive correlation between protein kinase C ζ (PKCζ) activation and d-flow has been reported, but the exact role of d-flow-mediated PKCζ activation in atherosclerosis remains unclear. We tested the hypothesis that PKCζ activation by d-flow induces endothelial cell (EC) apoptosis by regulating p53. We found that d-flow-mediated peroxynitrite (ONOO(-)) increased PKCζ activation, which subsequently induced p53 SUMOylation, p53-Bcl-2 binding, and EC apoptosis. Both d-flow and ONOO(-) increased the association of PKCζ with protein inhibitor of activated STATy (PIASy) via the Siz/PIAS-RING domain (amino acids 301-410) of PIASy, and overexpression of this domain of PIASy disrupted the PKCζ-PIASy interaction and PKCζ-mediated p53 SUMOylation. En face confocal microscopy revealed increases in nonnuclear p53 expression, nitrotyrosine staining, and apoptosis in aortic EC located in d-flow areas in wild-type mice, but these effects were significantly decreased in p53(-/-) mice. We propose a novel mechanism for p53 SUMOylation mediated by the PKCζ-PIASy interaction during d-flow-mediated EC apoptosis, which has potential relevance to early events of atherosclerosis.


G-Protein-Coupled Receptor-2-Interacting Protein-1 Controls Stalk Cell Fate by Inhibiting Delta-like 4-Notch1 Signaling.

  • Syamantak Majumder‎ et al.
  • Cell reports‎
  • 2016‎

The spatiotemporal localization and expression of Dll4 are critical for sprouting angiogenesis. However, the related mechanisms are poorly understood. Here, we show that G-protein-coupled receptor-kinase interacting protein-1 (GIT1) is a robust endogenous inhibitor of Dll4-Notch1 signaling that specifically controls stalk cell fate. GIT1 is highly expressed in stalk cells but not in tip cells. GIT1 deficiency remarkably enhances Dll4 expression and Notch1 signaling, resulting in impaired retinal sprouting angiogenesis, which can be rescued by treatment with the Notch inhibitor or Dll4 neutralizing antibody. Notch1 regulates Dll4 expression by binding to recombining binding protein suppressor of hairless (RBP-J, a transcriptional regulator of Notch) via a highly conserved ankyrin (ANK) repeat domain. We show that GIT1, which also contains an ANK domain, inhibits the Notch1-Dll4 signaling pathway by competing with Notch1 ANK domain for binding to RBP-J in stalk cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: