Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 290 papers

Ophiopogonin D: A new herbal agent against osteoporosis.

  • Qiang Huang‎ et al.
  • Bone‎
  • 2015‎

Excessive reactive oxygen species (ROS) play an important role in the development of osteoporosis. Ophiopogonin D (OP-D), isolated from the traditional Chinese herbal agent Radix Ophiopogon japonicus, is a potent anti-oxidative agent. We hypothesized that OP-D demonstrates anti-osteoporosis effects via decreasing ROS generation in mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells and a macrophage cell line RAW264.7 cells. We investigated OP-D on osteogenic and osteoclastic differentiation under oxidative status. Hydrogen peroxide (H2O2) was used to establish an oxidative damage model. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Then, we searched the molecular mechanism of OP-D against osteoporosis. Our results revealed that OP-D significantly promoted the proliferation of MC3T3-E1 cells and improved some osteogenic markers. Moreover, OP-D reduced TRAP activity and the mRNA expressions of osteoclastic genes in RAW264.7 cells. OP-D suppressed ROS generation in both MC3T3-E1 and RAW264.7 cells. OP-D treatment reduced the activity of serum bone degradation markers, including CTX-1 and TRAP. Further research showed that OP-D displayed anti-osteoporosis effects via reducing ROS through the FoxO3a-β-catenin signaling pathway. In summary, our results indicated that the protective effects of OP-D against osteoporosis are linked to a reduction in oxidative stress via the FoxO3a-β-catenin signaling pathway, suggesting that OP-D may be a beneficial herbal agent in bone-related disorders, such as osteoporosis.


Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene.

  • Mengyi Qiu‎ et al.
  • Scientific reports‎
  • 2014‎

The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO₂-surface area (CO₂-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO₂-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and π-π interaction play an important role in the adsorption of PHE by biochars. High CO₂-SA (>200 m(2) g(-1)) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs.


Transcriptome and Gene Expression Analysis of Cylas formicarius (Coleoptera: Brentidae) During Different Development Stages.

  • Juan Ma‎ et al.
  • Journal of insect science (Online)‎
  • 2016‎

The sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is an important pest of sweet potato worldwide. However, there is limited knowledge on the molecular mechanisms underlying growth and differentiation of C. formicarius The transcriptomes of the eggs, second instar larvae, third instar larvae (L3), pupae, females, and males of C. formicarius were sequenced using Illumina sequencing technology for obtaining global insights into developing transcriptome characteristics and elucidating the relative functional genes. A total of 54,255,544 high-quality reads were produced, trimmed, and de novo assembled into 115,281 contigs. 61,686 unigenes were obtained, with an average length of 1,009 nt. Among these unigenes, 17,348 were annotated into 59 Gene Ontology (GO) terms and 12,660 were assigned to 25 Cluster of Orthologous Groups classes, whereas 24,796 unigenes were mapped to 258 pathways. Differentially expressed unigenes between various developmental stages of C. formicarius were detected. Higher numbers of differentially expressed genes (DEGs) were recorded in the eggs versus L3 and eggs versus male samples (2,141 and 2,058 unigenes, respectively) than the others. Genes preferentially expressed in each stage were also identified. GO and pathway-based enrichment analysis were used to further investigate the functions of the DEGs. In addition, the expression profiles of ten DEGs were validated by quantitative real-time PCR. The transcriptome profiles presented in this study and these DEGs detected by comparative analysis of different developed stages of C. formicarius will facilitate the understanding of the molecular mechanism of various living process and will contribute to further genome-wide research.


A mechanism for sequence specificity in plant-mediated interactions between herbivores.

  • Wei Huang‎ et al.
  • The New phytologist‎
  • 2017‎

Herbivore communities are shaped by indirect plant-mediated interactions whose outcomes are strongly dependent on the sequence of herbivore arrival. However, the mechanisms underlying sequence specificity are poorly understood. We examined the mechanisms that govern sequence-specific effects of the interaction between two specialist maize herbivores, the leaf feeder Spodoptera frugiperda and the root feeder Diabrotica virgifera virgifera. In the field, S. frugiperda reduces D. v. virgifera abundance, but only when it arrives on the plant first. In behavioral experiments, D. v. virgifera larvae continued feeding on plants that they had infested before leaf infestation, but refused to initiate feeding on plants that were infested by S. frugiperda before their arrival. Changes in root-emitted volatiles were sufficient to elicit this sequence-specific behavior. Root volatile and headspace mixing experiments showed that early-arriving D. v. virgifera larvae suppressed S. frugiperda-induced volatile repellents, which led to the maintenance of host attractiveness to D. v. virgifera. Our study provides a physiological and behavioral mechanism for sequence specificity in plant-mediated interactions and suggests that physiological canalization of behaviorally active metabolites can drive sequence specificity and result in strongly diverging herbivore distribution patterns.


Lack of Casein Kinase 1 Delta Promotes Genomic Instability - The Accumulation of DNA Damage and Down-Regulation of Checkpoint Kinase 1.

  • Yoshimi Endo Greer‎ et al.
  • PloS one‎
  • 2017‎

Casein kinase 1 delta (CK1δ) is a conserved serine/threonine protein kinase that regulates diverse cellular processes. Mice lacking CK1δ have a perinatal lethal phenotype and typically weigh 30% less than their wild type littermates. However, the causes of death and small size are unknown. We observed cells with abnormally large nuclei in tissue from Csnk1d null embryos, and multiple centrosomes in mouse embryo fibroblasts (MEFs) deficient in CK1δ (MEFCsnk1d null). Results from γ-H2AX staining and the comet assay demonstrated significant DNA damage in MEFCsnk1d null cells. These cells often contain micronuclei, an indicator of genomic instability. Similarly, abrogation of CK1δ expression in control MEFs stimulated micronuclei formation after doxorubicin treatment, suggesting that CK1δ loss increases vulnerability to genotoxic stress. Cellular levels of total and activated checkpoint kinase 1 (Chk1), which functions in the DNA damage response and mitotic checkpoints, and its downstream effector, Cdc2/CDK1 kinase, were often decreased in MEFCsnk1d null cells as well as in control MEFs transfected with CK1δ siRNA. Hydroxyurea-induced Chk1 activation, as measured by Ser345 phosphorylation, and nuclear localization also were impaired in MEF cells following siRNA knockdown of CK1δ. Similar results were observed in the MCF7 human breast cancer cell line. The decreases in phosphorylated Chk1 were rescued by concomitant expression of siRNA-resistant CK1δ. Experiments with cycloheximide demonstrated that the stability of Chk1 protein was diminished in cells subjected to CK1δ knockdown. Together, these findings suggest that CK1δ contributes to the efficient repair of DNA damage and the proper functioning of mitotic checkpoints by maintaining appropriate levels of Chk1.


Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration.

  • Zhen Sun‎ et al.
  • Biomaterials‎
  • 2016‎

Various scaffolds have been attempted for intervertebral disc regeneration, but their effectiveness was limited by loss of nutrients within the scaffolds. It has been suggested that the disc is not severely hypoxic and limited availability of oxygen results in disc degeneration. Therefore, a certain oxygen level might be beneficial for disc regeneration, which has not been given enough attention in previous studies. Here, we used perfluorotributylamine (PFTBA) for the first time as an oxygen regulator in alginate scaffold for disc regeneration in vitro and in vivo. We found that the characteristics of alginate were not affected by PFTBA and the oxygen level of the scaffold was regulated. Then, human nucleus pulposus (NP) cells were cultured in the PFTBA-enriched alginates. It was found that PFTBA could promote NP cell survival and proliferation. In addition, 2.5% PFTBA was capable of regulating extracellular matrix (ECM) to a disc-like tissue graft with little effect on the expression of NP cell markers. Finally, 2.5% PFTBA-enriched alginate was found to restore the disc height and the ECM in a mouse disc degeneration model, indicating its beneficial effect on alleviating disc degeneration. These findings highlight the promising application of PFTBA in further intervertebral disc regeneration.


Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

  • Juliet D French‎ et al.
  • Oncotarget‎
  • 2016‎

Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.


Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE-/- knockout mice fed normal diet.

  • Bo Gao‎ et al.
  • Atherosclerosis‎
  • 2015‎

Chronic methamphetamine (METH) abuse could induce neurotoxicity due to reactive oxygen species generation and sympathetic activation. Both factors are associated with atherosclerosis, so we tested the hypothesis that chronic METH administration might also promote atherosclerosis formation in Apo E-/- knockout mice fed normal diet.


Inhibition of Histone Deacetylase Activity Aggravates Coxsackievirus B3-Induced Myocarditis by Promoting Viral Replication and Myocardial Apoptosis.

  • Lei Zhou‎ et al.
  • Journal of virology‎
  • 2015‎

Viral myocarditis, which is most prevalently caused by coxsackievirus B3 (CVB3), is a serious clinical condition characterized by excessive myocardial inflammation. Recent studies suggest that regulation of protein acetylation levels by inhibiting histone deacetylase (HDAC) activity modulates inflammatory response and shows promise as a therapy for several inflammatory diseases. However, the role of HDAC activity in viral myocarditis is still not fully understood. Here, we aim to investigate the role of HDAC activity in viral myocarditis and its underlying mechanism. CVB3-infected BALB/c mice were treated with the HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) or trichostatin A (TSA). We found inhibition of HDAC activity aggravated rather than ameliorated the severity of CVB3-induced myocarditis, which was contrary to our expectations. The aggravated myocarditis by HDACI treatment seemed not to be caused by an elevated inflammatory response but by the increased CVB3 replication. Further, it was revealed that the increased CVB3 replication was closely associated with the HDACI-enhanced autophagosome formation. Inhibition of autophagosome formation by wortmannin or ATG5 short hairpin RNA dramatically suppressed the HDACI-increased CVB3 replication. The increased viral replication subsequently elevated CVB3-induced myocardial apoptosis. Conversely, inhibition of CVB3 replication and ensuing myocardial apoptosis by the antiviral drug ribavirin significantly reversed the HDACI-aggravated viral myocarditis. In conclusion, we elucidate that the inhibition of HDAC activity increases CVB3 replication and ensuing myocardial apoptosis, resulting in aggravated viral myocarditis. Possible adverse consequences of administering HDACI should be considered in patients infected (or coinfected) with CVB3.


Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm.

  • Jian Zhang‎ et al.
  • BMC bioinformatics‎
  • 2016‎

DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable.


Stress Analysis of a Class II MO-Restored Tooth Using a 3D CT-Based Finite Element Model.

  • Yiu Pong Chan‎ et al.
  • International journal of biomaterials‎
  • 2012‎

A computational method has been developed for stress analysis of a restored tooth so that experimental effort can be minimized. The objectives of this study include (i) developing a method to create a 3D FE assembly model for a restored tooth based on CT images and (ii) conducting stress analysis of the restored tooth using the 3D FE model established. To build up a solid computational model of a tooth, a method has been proposed to construct a 3D model from 2D CT-scanned images. Facilitated with CAD tools, the 3D tooth model has been virtually incorporated with a Class II MO restoration. The tooth model is triphasic, including the enamel, dentin, and pulp phases. To mimic the natural constraint on the movement of the tooth model, its corresponding mandible model has also been generated. The relative high maximum principal stress values were computed at the surface under loading and in the marginal region of the interface between the restoration and the tooth phases.


Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

  • Shuaizheng Jia‎ et al.
  • PloS one‎
  • 2011‎

The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.


Molecular cloning, spatial and temporal expression analysis of CatSper genes in the Chinese Meishan pigs.

  • Chengyi Song‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2011‎

Sperm ion channel proteins (CatSpers) are essential for sperm hyperactivated motility, and then penetration through the zona pellucida. The CatSper class of proteins have well been characterized in the mouse and human. However, such data for pigs are not available. In the present study, we cloned the porcine CatSper 1-4 genes, analysed their spatial expression in various organs and temporal expression in the testes from birth until sexual maturity in Meishan boars.


Anti-hyperglycemic effect of chebulagic acid from the fruits of Terminalia chebula Retz.

  • Yi-Na Huang‎ et al.
  • International journal of molecular sciences‎
  • 2012‎

In the present study, we firstly compared rat intestinal α-glucosidase inhibitory activity by different ethanol-aqueous extractions from the dried fruits of Terminalia chebula Retz. The enzymatic assay showed that the 80% ethanol extract was more potent against maltase activity than both 50% and 100% ethanol extracts. By HPLC analysis, it was determined that the 80% ethanol extract had a higher content of chebulagic acid than each of 50% or 100% ethanol extract. Next, we investigated how efficiently chebulagic acid could inhibit sugar digestion by determining the glucose level on the apical side of the Caco-2 cell monolayer. The result showed that the maltose-hydrolysis activity was down-regulated by chebulagic acid, which proved to be a reversible inhibitor of maltase in Caco-2 cells. On the other hand, chebulagic acid showed a weak inhibition of sucrose-hydrolysis activity. Meanwhile, chebulagic acid did not have an obvious influence on intestinal glucose uptake and was not effective on glucose transporters. Further animal studies revealed that the oral administration of chebulagic acid (100 mg/kg body weight) significantly reduced postprandial blood glucose levels by 11.1% in maltose-loaded Sprague-Dawley (SD) rats compared with the control group, whereas the oral administration of chebulagic acid did not show a suppressive effect on postprandial hyperglycemia in sucrose- or glucose-loaded SD-rats. The results presented here suggest that chebulagic acid from T. chebula can be used to control blood glucose and manage type 2 diabetes, although clinical trials are needed.


Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.

  • Bo Gao‎ et al.
  • PloS one‎
  • 2017‎

Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.


Genetic Polymorphism Study on Aedes albopictus of Different Geographical Regions Based on DNA Barcoding.

  • Yiliang Fang‎ et al.
  • BioMed research international‎
  • 2018‎

Aedes albopictus is a very important vector for pathogens of many infectious diseases including dengue fever. In this study, we explored the genetic polymorphism of Aedes albopictus strains in different geographical regions using DNA barcoding of mitochondrial COI (MT-COI) gene. We collected MT-COI sequence of 106 Aedes albopictus mosquitos from 6 provinces in China including Fujian, Guangdong, Hainan, Yunnan, and Taiwan. The length of the sequences is 709bp with the content of A+T (67.7%) greater than that of G+C (32.3%). We identified mutations in 90 (13.68%) loci, of which 57 (63.33%) are transitions, 28 (31.11%) are transversions, and 5 (5.56%) are hypervariable loci. In addition, we obtained 42 haplotypes, 4 (9.52%) of which are shared among different populations. The haplotype diversity of Aedes albopictus is 0.882 and nucleotide diversity is 0.01017. Moreover, the pedigree network diagram shows that most haplotypes are under parallel evolution, suggesting a local expansion of Aedes albopictus in history. Finally, the Neighbor-Joining tree of MT-COI haplotypes reveals a certain correlation between haplotype clusters and geographical distribution, and there are differences among Aedes albopictus in different geographical regions. In conclusion, DNA barcoding of MT-COI gene is an effective method to study the genetic structure of Aedes albopictus.


Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:IncpA1763-KPC:IncN1 or IncFIIpHN7A8:IncpA1763-KPC:IncN1.

  • Daofeng Qu‎ et al.
  • Infection and drug resistance‎
  • 2019‎

IncR, IncFII, IncpA1763-KPC, and IncN1 plasmids have been increasingly found among Enterobacteriaceae species, but plasmids with hybrid structures derived from the above-mentioned incompatibility groups have not yet been described.


Low diversity, activity, and density of transposable elements in five avian genomes.

  • Bo Gao‎ et al.
  • Functional & integrative genomics‎
  • 2017‎

In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.


A novel ZRS variant causes preaxial polydactyly type I by increased sonic hedgehog expression in the developing limb bud.

  • Caixia Xu‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2020‎

Preaxial polydactyly (PPD) is a common congenital hand malformation classified into four subtypes (PPD I-IV). Variants in the zone of polarizing activity regulatory sequence (ZRS) within intron 5 of the LMBR1 gene are linked to most PPD types. However, the genes responsible for PPD I and the underlying mechanisms are unknown.


Octamer binding transcription factor-4 expression is associated with cervical cancer malignancy and histological differentiation: a systematic review and meta-analysis.

  • Zi-Ye Gao‎ et al.
  • Bioscience reports‎
  • 2019‎

Objective: In this work, the relationship between octamer binding transcription factor 4 (OCT-4) expression and the clinicopathological features of cervical cancer (CC) is evaluated in detail.Methods: The library databases Pubmed, Embase, Cochrane library, Wan Fang and Chinese National Knowledge Infrastructure (CNKI) were searched for research related to these concepts published from the time the databases were established until May 2018. The obtained studies are screened, extracted, and evaluated according to the inclusion and exclusion criteria, and meta-analysis is carried out via RevMan 5.3.Results: Ten case-control studies, including 408 cases of CC, 164 cases of cervical intraepithelial neoplasia (CIN), and 148 cases of normal cervix, are included in the analysis. Results show that OCT-4 levels are statistically significantly different between the CC and normal cervical tissue groups (odds ratio (OR) = 15.59, 95% confidence interval (CI): 8.70, 27.94), the CC and CIN groups (OR = 5.64, 95% CI: 3.23, 9.86), the CIN and normal cervical tissues groups (OR = 7.13, 95% CI: 2.41, 21.05), and the CC well/moderately differentiated and poorly differentiated groups (OR = 0.44, 95% CI: 0.24, 0.81). OCT-4 is not statistically significantly different between CIN I + II and CIN III tissues (OR = 0.40, 95% CI: -0.02, 0.81), the CC lymphatic and non-lymphatic metastasis groups (OR = 1.93, 95% CI: 0.83, 4.47), the FIGO I and FIGO II groups (OR = 0.79, 95% CI: 0.29, 2.13), and the adenocarcinoma and squamous cell carcinoma groups (OR = 1.55, 95% CI: 0.70, 3.44).Conclusions: The available evidence suggests that OCT-4 expression is associated with CC malignancy and histological differentiation. This finding, however, is subject to quantitative studies and quality tests.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: