Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

Inhibition of heat-induced apoptosis in rat small intestine and IEC-6 cells through the AKT signaling pathway.

  • Zhimin Gao‎ et al.
  • BMC veterinary research‎
  • 2013‎

As the world warms up, heat stress is becoming a major cause of economic loss in the livestock industry. Long-time exposure of animals to hyperthermia causes extensive cell apoptosis, which is harmful to them. AKT and AKT-related serine-threonine kinases are known to be involved in signaling cascades that regulate cell survival, but the mechanism remains elusive. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K) /AKT signal pathway provides protection against apoptosis induced by heat stress to ascertain the key point for treatment.


Transcriptome profiling of white adipose tissue in a mouse model for 15q duplication syndrome.

  • Xiaoxi Liu‎ et al.
  • Genomics data‎
  • 2015‎

Obesity is not only associated with unhealthy lifestyles, but also linked to genetic predisposition. Previously, we generated an autism mouse model (patDp/+) that carries a 6.3 Mb paternal duplication homologous to the human 15q11-q13 locus. Chromosomal abnormalities in this region are known to cause autism spectrum disorder, Prader-Willi syndrome, and Angelman syndrome in humans. We found that, in addition to autistic-like behaviors, patDp/+ mice display late-onset obesity and hypersensitivity to a high-fat diet. These phenotypes are likely to be the results of genetic perturbations since the energy expenditures and food intakes of patDp/+ mice do not significantly differ from those of wild-type mice. Intriguingly, we found that an enlargement of adipose cells precedes the onset of obesity in patDp/+ mice. To understand the underlying molecular networks responsible for this pre-obese phenotype, we performed transcriptome profiling of white adipose tissue from patDp/+ and wild-type mice using microarray. We identified 230 genes as differentially expressed genes. Sfrp5 - a gene whose expression is positively correlated with adipocyte size, was found to be up-regulated, and Fndc5, a potent inducer of brown adipogenesis was identified to be the top down-regulated gene. Subsequent pathway analysis highlighted a set of 35 molecules involved in energy production, lipid metabolism, and small molecule biochemistry as the top candidate biological network responsible for the pre-obese phenotype of patDp/+. The microarray data were deposited in NCBI Gene Expression Omnibus database with accession number GSE58191. Ultimately, our dataset provides novel insights into the molecular mechanism of obesity and demonstrated that patDp/+ is a valuable mouse model for obesity research.


Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development.

  • Katherine A Donovan‎ et al.
  • Cell‎
  • 2020‎

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Hematopoietic mosaic chromosomal alterations and risk for infection among 767,891 individuals without blood cancer.

  • Seyedeh M Zekavat‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2020‎

Age is the dominant risk factor for infectious diseases, but the mechanisms linking the two are incompletely understood 1,2 . Age-related mosaic chromosomal alterations (mCAs) detected from blood-derived DNA genotyping, are structural somatic variants associated with aberrant leukocyte cell counts, hematological malignancy, and mortality 3-11 . Whether mCAs represent independent risk factors for infection is unknown. Here we use genome-wide genotyping of blood DNA to show that mCAs predispose to diverse infectious diseases. We analyzed mCAs from 767,891 individuals without hematological cancer at DNA acquisition across four countries. Expanded mCA (cell fraction >10%) prevalence approached 4% by 60 years of age and was associated with diverse incident infections, including sepsis, pneumonia, and coronavirus disease 2019 (COVID-19) hospitalization. A genome-wide association study of expanded mCAs identified 63 significant loci. Germline genetic alleles associated with expanded mCAs were enriched at transcriptional regulatory sites for immune cells. Our results link mCAs with impaired immunity and predisposition to infections. Furthermore, these findings may also have important implications for the ongoing COVID-19 pandemic, particularly in prioritizing individual preventive strategies and evaluating immunization responses.


Endogenization and excision of human herpesvirus 6 in human genomes.

  • Xiaoxi Liu‎ et al.
  • PLoS genetics‎
  • 2020‎

Sequences homologous to human herpesvirus 6 (HHV-6) are integrated within the nuclear genome of about 1% of humans, but it is not clear how this came about. It is also uncertain whether integrated HHV-6 can reactivate into an infectious virus. HHV-6 integrates into telomeres, and this has recently been associated with polymorphisms affecting MOV10L1. MOV10L1 is located on the subtelomere of chromosome 22q (chr22q) and is required to make PIWI-interacting RNAs (piRNAs). As piRNAs block germline integration of transposons, piRNA-mediated repression of HHV-6 integration has been proposed to explain this association. In vitro, recombination of the HHV-6 genome along its terminal direct repeats (DRs) leads to excision from the telomere and viral reactivation, but the expected "solo-DR scar" has not been described in vivo. Here we screened for integrated HHV-6 in 7,485 Japanese subjects using whole-genome sequencing (WGS). Integrated HHV-6 was associated with polymorphisms on chr22q. However, in contrast to prior work, we find that the reported MOV10L1 polymorphism is physically linked to an ancient endogenous HHV-6A variant integrated into the telomere of chr22q in East Asians. Unexpectedly, an HHV-6B variant has also endogenized in chr22q; two endogenous HHV-6 variants at this locus thus account for 72% of all integrated HHV-6 in Japan. We also report human genomes carrying only one portion of the HHV-6B genome, a solo-DR, supporting in vivo excision and possible viral reactivation. Together these results explain the recently-reported association between integrated HHV-6 and MOV10L1/piRNAs, suggest potential exaptation of HHV-6 in its coevolution with human chr22q, and clarify the evolution and risk of reactivation of the only intact (non-retro)viral genome known to be present in human germlines.


Sensitivity to gene dosage and gene expression affects genes with copy number variants observed among neuropsychiatric diseases.

  • Maria Yamasaki‎ et al.
  • BMC medical genomics‎
  • 2020‎

Copy number variants (CNVs) have been reported to be associated with diseases, traits, and evolution. However, it is hard to determine which gene should have priority as a target for further functional experiments if a CNV is rare or a singleton. In this study, we attempted to overcome this issue by using two approaches: by assessing the influences of gene dosage sensitivity and gene expression sensitivity. Dosage sensitive genes derived from two-round whole-genome duplication in previous studies. In addition, we proposed a cross-sectional omics approach that utilizes open data from GTEx to assess the effect of whole-genome CNVs on gene expression.


The combination of FLT3 and SYK kinase inhibitors is toxic to leukaemia cells with CBL mutations.

  • Ellen Weisberg‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Mutations in the E3 ubiquitin ligase CBL, found in several myeloid neoplasms, lead to decreased ubiquitin ligase activity. In murine systems, these mutations are associated with cytokine-independent proliferation, thought to result from the activation of hematopoietic growth receptors, including FLT3 and KIT. Using cell lines and primary patient cells, we compared the activity of a panel of FLT3 inhibitors currently being used or tested in AML patients and also evaluated the effects of inhibition of the non-receptor tyrosine kinase, SYK. We show that FLT3 inhibitors ranging from promiscuous to highly targeted are potent inhibitors of growth of leukaemia cells expressing mutant CBL in vitro, and we demonstrate in vivo efficacy of midostaurin using mouse models of mutant CBL. Potentiation of effects of targeted FLT3 inhibition by SYK inhibition has been demonstrated in models of mutant FLT3-positive AML and AML characterized by hyperactivated SYK. Here, we show that targeted SYK inhibition similarly enhances the effects of midostaurin and other FLT3 inhibitors against mutant CBL-positive leukaemia. Taken together, our results support the notion that mutant CBL-expressing myeloid leukaemias are highly sensitive to available FLT3 inhibitors and that this effect can be significantly augmented by optimum inhibition of SYK kinase.


Effect of Puerarin, Baicalin and Berberine Hydrochloride on the Regulation of IPEC-J2 Cells Infected with Enterotoxigenic Escherichia coli.

  • Xiaoxi Liu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

Puerarin, baicalin and berberine hydrochloride are the main components of Gegen Qinlian Decoction, which has been used to treat diarrhoea in China for hundreds of years, yet the biological function and molecular mechanism of these components are not clear. To investigate the effects of puerarin, baicalin, and berberine hydrochloride on the regulation of porcine intestinal epithelial cells (IPEC-J2 cells) infected with enterotoxigenic Escherichia coli (ETEC). IPEC-J2 cells were pretreated with puerarin (200 μg/mL), baicalin (1 μg/mL), and berberine hydrochloride (100 μg/mL) at 37°C for 3 h and then coincubated with the F4ac ETEC bacterial strain 200 at 37°C for 3 h. ETEC infection damaged the structure of IPEC-J2 cells, upregulated mucin 4 (P < 0.01) and mucin 13 mRNA (P < 0.05) expression, increased the apoptosis rate (P < 0.05), and promoted inflammatory responses (IL-6 and CXCL-2 mRNA expression) in IPEC-J2 cells by activating the nuclear factor-κB (NF-κB) signaling pathway. Pretreatment with puerarin, baicalin, and berberine hydrochloride improved the structure and morphology of IPEC-J2 cells and inhibited ETEC adhesion by downregulating specific adhesion molecules. Pretreatment with baicalin decreased the inflammatory response; pretreatment with baicalin and berberine hydrochloride decreased the inflammatory response mediated by the NF-κB signaling pathway. Pretreatment with puerarin, baicalin, and berberine hydrochloride protected IPEC-J2 cells from ETEC infection by inhibiting bacterial adhesion and inflammatory responses.


Circulating Th1/17 cells serve as a biomarker of disease severity and a target for early intervention in AChR-MG patients.

  • Qian Ma‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2020‎

Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered to be critical regulators of thymic inflammation in AChR-MG patients. However, Th17 cells are functionally heterogeneous and circulating Th17 subsets are incompletely understood in AChR-MG patients. Here, we studied characteristics of Th17 subsets in peripheral blood from treatment-naïve AChR-MG patients, patients treated with immunosuppressants, as well as healthy controls. We found increased frequencies of circulating Th1-like Th17 (Th1/17) (IFN-γ + IL-17 + CD4 + CD3+) cells, which declined earlier than conventional Th17 (IFN-γ - IL-17 + CD4 + CD3+) cells in patients who respond well to immunosuppression treatment. Additionally, circulating Th1/17 cell frequencies were found to correlate positively with disease severity. Further, compared to conventional Th17 cells, Th1/17 cells showed an elevated expression of IFNG, TBX21, IL23R, CSF2, and a reduced expression of AHR and IL10. Taken together, our results suggest circulating Th1/17 cells may serve as a biomarker of disease severity and provide a strong rationale for early intervention in AChR-MG patients.


ProbeRating: a recommender system to infer binding profiles for nucleic acid-binding proteins.

  • Shu Yang‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2020‎

The interaction between proteins and nucleic acids plays a crucial role in gene regulation and cell function. Determining the binding preferences of nucleic acid-binding proteins (NBPs), namely RNA-binding proteins (RBPs) and transcription factors (TFs), is the key to decipher the protein-nucleic acids interaction code. Today, available NBP binding data from in vivo or in vitro experiments are still limited, which leaves a large portion of NBPs uncovered. Unfortunately, existing computational methods that model the NBP binding preferences are mostly protein specific: they need the experimental data for a specific protein in interest, and thus only focus on experimentally characterized NBPs. The binding preferences of experimentally unexplored NBPs remain largely unknown.


Identification and validation of selective deubiquitinase inhibitors.

  • Anthony C Varca‎ et al.
  • Cell chemical biology‎
  • 2021‎

Deubiquitinating enzymes (DUBs) are a class of isopeptidases that regulate ubiquitin dynamics through catalytic cleavage of ubiquitin from protein substrates and ubiquitin precursors. Despite growing interest in DUB biological function and potential as therapeutic targets, few selective small-molecule inhibitors and no approved drugs currently exist. To identify chemical scaffolds targeting specific DUBs and establish a broader framework for future inhibitor development across the gene family, we performed high-throughput screening of a chemically diverse small-molecule library against eight different DUBs, spanning three well-characterized DUB families. Promising hit compounds were validated in a series of counter-screens and orthogonal assays, as well as further assessed for selectivity across expanded panels of DUBs. Through these efforts, we have identified multiple highly selective DUB inhibitors and developed a roadmap for rapidly identifying and validating selective inhibitors of related enzymes.


Akkermansia muciniphila phospholipid induces homeostatic immune responses.

  • Munhyung Bae‎ et al.
  • Nature‎
  • 2022‎

Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.


Safety of linezolid in patients with decreased renal function and trough monitoring: a systematic review and meta-analysis.

  • Xiaoxi Liu‎ et al.
  • BMC pharmacology & toxicology‎
  • 2022‎

Linezolid causes hematological toxicity, mostly thrombocytopenia, which leads to treatment discontinuation and failure. Recent studies revealed that during linezolid therapy, the incidence of treatment-related hematological toxicity is significantly higher in patients with decreased renal function (DRF) than in those with normal renal function. Linezolid monitoring is necessary due to the high frequency of hematological toxicity in patients with DRF and the relationship between blood concentration and safety. We performed a systematic review and meta-analysis to evaluate the safety correlation between DRF and trough monitoring.


Clinically Translatable Hyperpolarized 13C Bicarbonate pH Imaging Method for Use in Prostate Cancer.

  • Changhua Mu‎ et al.
  • ACS sensors‎
  • 2023‎

Solid tumors such as prostate cancer (PCa) commonly develop an acidic microenvironment with pH 6.5-7.2, owing to heterogeneous perfusion, high metabolic activity, and rapid cell proliferation. In preclinical prostate cancer models, disease progression is associated with a decrease in tumor extracellular pH, suggesting that pH imaging may reflect an imaging biomarker to detect aggressive and high-risk disease. Therefore, we developed a hyperpolarized carbon-13 MRI method to image the tumor extracellular pH (pHe) and prepared it for clinical translation for detection and risk stratification of PCa. This method relies on the rapid breakdown of hyperpolarized (HP) 1,2-glycerol carbonate (carbonyl-13C) via base-catalyzed hydrolysis to produce HP 13CO32-, which is neutralized and converted to HP H13CO3-. After injection, HP H13CO3- equilibrates with HP 13CO2 in vivo and enables the imaging of pHe. Using insights gleaned from mechanistic studies performed in the hyperpolarized state, we solved issues of polarization loss during preparation in a clinical polarizer system. We successfully customized a reaction apparatus suitable for clinical application, developed clinical standard operating procedures, and validated the radiofrequency pulse sequence and imaging data acquisition with a wide range of animal models. The results demonstrated that we can routinely produce a highly polarized and safe HP H13CO3- contrast agent suitable for human injection. Preclinical imaging studies validated the reliability and accuracy of measuring acidification in healthy kidney and prostate tumor tissue. These methods were used to support an Investigational New Drug application to the U.S. Food and Drug Administration. This methodology is now ready to be implemented in human trials, with the ultimate goal of improving the management of PCa.


GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region.

  • Yuki Ishikawa‎ et al.
  • Nature communications‎
  • 2024‎

Here we report the largest Asian genome-wide association study (GWAS) for systemic sclerosis performed to date, based on data from Japanese subjects and comprising of 1428 cases and 112,599 controls. The lead SNP is in the FCGR/FCRL region, which shows a penetrating association in the Asian population, while a complete linkage disequilibrium SNP, rs10917688, is found in a cis-regulatory element for IRF8. IRF8 is also a significant locus in European GWAS for systemic sclerosis, but rs10917688 only shows an association in the presence of the risk allele of IRF8 in the Japanese population. Further analysis shows that rs10917688 is marked with H3K4me1 in primary B cells. A meta-analysis with a European GWAS detects 30 additional significant loci. Polygenic risk scores constructed with the effect sizes of the meta-analysis suggest the potential portability of genetic associations beyond populations. Prioritizing the top 5% of SNPs of IRF8 binding sites in B cells improves the fitting of the polygenic risk scores, underscoring the roles of B cells and IRF8 in the development of systemic sclerosis. The results also suggest that systemic sclerosis shares a common genetic architecture across populations.


Activation of transcription factor AP-1 in response to thermal injury in rat small intestine and IEC-6 cells.

  • Yonghong Zhang‎ et al.
  • BMC gastroenterology‎
  • 2015‎

Our previous studies indicated that heat stress can cause significant damage to the intestinal epithelium and induce differential expression of many genes in rat small intestine. The transcription factors AP-1 and NF-κB, which act as important mediators by binding to specific DNA sequences within gene promoters, regulate the transcription of genes associated with immune regulation, stress response and cell fate.


Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers.

  • Xiaoxi Liu‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Tomato (Solanum lycopersicum) fruit weight (FW), soluble solid content (SSC), fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI), and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19-1.30 × 10-4) associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05) associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.


Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2.

  • Jonathan R LaRochelle‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2017‎

The PTPN11 oncogene encodes the cytoplasmic protein tyrosine phosphatase SHP2, which, through its role in multiple signaling pathways, promotes the progression of hematological malignancies and other cancers. Here, we employ high-throughput screening to discover a lead chemical scaffold, the benzothiazolopyrimidones, that allosterically inhibits this oncogenic phosphatase by simultaneously engaging the C-SH2 and PTP domains. We improved our lead to generate an analogue that better suppresses SHP2 activity in vitro. Suppression of Erk phopsphorylation by the lead compound is also consistent with SHP2 inhibition in AML cells. Our findings provide an alternative starting point for therapeutic intervention and will catalyze investigations into the relationship between SHP2 conformational regulation, activity, and disease progression.


Neuroprotective effects of leonurine against oxygen-glucose deprivation by targeting Cx36/CaMKII in PC12 cells.

  • Jiao Li‎ et al.
  • PloS one‎
  • 2018‎

Leonurine has been reported to play an important role in ameliorating cognitive dysfunction, inhibiting ischemic stroke, and attenuating perihematomal edema and neuroinflammation in intracerebral hemorrhage. However, the exact mechanism and potential molecular targets of this effect remain unclear. Thus, in this study we investigated the neuroprotective effects of leonurine on hypoxia ischemia injury and explored the underlying mechanisms. An in vitro model of oxygen-glucose deprivation (OGD)-induced PC12 cells was established to mimic ischemic-like conditions. Cell viability, apoptosis, Cx36 and pCaMKII/CaMKII expression levels were evaluated after treatment with leonurine. The Cx36-selective antagonist mefloquine and CaMKII Inhibitor KN-93 were used to investigate the neuroprotective effect of leonurine on and the involvement of Cx36/CaMKII in this process. The results revealed that cell viability decreased and cell apoptosis and the protein expression of Cx36 and pCaMKII/CaMKII increased in the OGD-induced PC12 cells. Leonurine significantly increased cell viability and decreased cell apoptosis and the protein expression of Cx36 and pCaMKII/CaMKII in the OGD-induced PC12 cells. The specific inhibitor of Cx36 and CaMKII displayed similar protective effects. Moreover, the inhibition of Cx36 reduced pCaMKII levels and the ratio of pCaMKII/CaMKII in the OGD-induced PC12 cells, and vice versa. Taken together, these results suggest that leonurine might have a protective effect on OGD-induced PC12 cells through targeting the Cx36/CaMKII pathway. Thus, leonurine appears to have potential as a preventive or therapeutic drug against ischemic-induced neuronal injury.


Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma.

  • Björn Stolte‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

Ewing sarcoma is a pediatric cancer driven by EWS-ETS transcription factor fusion oncoproteins in an otherwise stable genomic background. The majority of tumors express wild-type TP53, and thus, therapies targeting the p53 pathway would benefit most patients. To discover targets specific for TP53 wild-type Ewing sarcoma, we used a genome-scale CRISPR-Cas9 screening approach and identified and validated MDM2, MDM4, USP7, and PPM1D as druggable dependencies. The stapled peptide inhibitor of MDM2 and MDM4, ATSP-7041, showed anti-tumor efficacy in vitro and in multiple mouse models. The USP7 inhibitor, P5091, and the Wip1/PPM1D inhibitor, GSK2830371, decreased the viability of Ewing sarcoma cells. The combination of ATSP-7041 with P5091, GSK2830371, and chemotherapeutic agents showed synergistic action on the p53 pathway. The effects of the inhibitors, including the specific USP7 inhibitor XL-188, were rescued by concurrent TP53 knockout, highlighting the essentiality of intact p53 for the observed cytotoxic activities.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: