Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Chemokine expression in the early response to injury in human airway epithelial cells.

  • Bingqing Xie‎ et al.
  • PloS one‎
  • 2018‎

Basal airway epithelial cells (AEC) constitute stem/progenitor cells within the central airways and respond to mucosal injury in an ordered sequence of spreading, migration, proliferation, and differentiation to needed cell types. However, dynamic gene transcription in the early events after mucosal injury has not been studied in AEC. We examined gene expression using microarrays following mechanical injury (MI) in primary human AEC grown in submersion culture to generate basal cells and in the air-liquid interface to generate differentiated AEC (dAEC) that include goblet and ciliated cells. A select group of ~150 genes was in differential expression (DE) within 2-24 hr after MI, and enrichment analysis of these genes showed over-representation of functional categories related to inflammatory cytokines and chemokines. Network-based gene prioritization and network reconstruction using the PINTA heat kernel diffusion algorithm demonstrated highly connected networks that were richer in differentiated AEC compared to basal cells. Similar experiments done in basal AEC collected from asthmatic donor lungs demonstrated substantial changes in DE genes and functional categories related to inflammation compared to basal AEC from normal donors. In dAEC, similar but more modest differences were observed. We demonstrate that the AEC transcription signature after MI identifies genes and pathways that are important to the initiation and perpetuation of airway mucosal inflammation. Gene expression occurs quickly after injury and is more profound in differentiated AEC, and is altered in AEC from asthmatic airways. Our data suggest that the early response to injury is substantially different in asthmatic airways, particularly in basal airway epithelial cells.


Using Advanced Bioinformatics Tools to Identify Novel Therapeutic Candidates for Proliferative Vitreoretinopathy.

  • Edward F Xie‎ et al.
  • Translational vision science & technology‎
  • 2023‎

Proliferative vitreoretinopathy (PVR) is the dreaded cause of failure following retinal detachment repair; however, no cures or preventative therapies exist to date. The purpose of this study was to use bioinformatics tools to identify drugs or compounds that interact with biomarkers and pathways involved in PVR pathogenesis that could be eligible for further testing for the prevention and treatment of PVR.


Oral Metformin Inhibits Choroidal Neovascularization by Modulating the Gut-Retina Axis.

  • Jason Y Zhang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2023‎

Emerging data indicate that metformin may prevent the development of age-related macular degeneration (AMD). Whereas the underlying mechanisms of metformin's anti-aging properties remain undetermined, one proposed avenue is the gut microbiome. Using the laser-induced choroidal neovascularization (CNV) model, we investigate the effects of oral metformin on CNV, retinal pigment epithelium (RPE)/choroid transcriptome, and gut microbiota.


An integrative computational approach for prioritization of genomic variants.

  • Inna Dubchak‎ et al.
  • PloS one‎
  • 2014‎

An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.


Characterizing the tumor microenvironment of metastatic ovarian cancer by single-cell transcriptomics.

  • Susan Olalekan‎ et al.
  • Cell reports‎
  • 2021‎

Understanding the cellular composition of the tumor microenvironment and the interactions of the cells is essential to the development of successful immunotherapies in cancer. We perform single-cell RNA sequencing (scRNA-seq) of 9,885 cells isolated from the omentum in 6 patients with ovarian cancer and identify 9 major cell types, including cancer, stromal, and immune cells. Transcriptional analysis of immune cells stratifies our patient samples into 2 groups: (1) high T cell infiltration (high Tinf) and (2) low T cell infiltration (low Tinf). TOX-expressing resident memory CD8+ T (CD8+ Trm) and granulysin-expressing CD4+ T cell clusters are enriched in the high Tinf group. Concurrently, we find unique plasmablast and plasma B cell clusters, and finally, NR1H2+IRF8+ and CD274+ macrophage clusters, suggesting an anti-tumor response in the high Tinf group. Our scRNA-seq study of metastatic tumor samples provides important insights in elucidating the immune response within ovarian tumors.


Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma.

  • Abhinav Srinath‎ et al.
  • Communications medicine‎
  • 2023‎

Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage.


Creating patient-specific vein models to characterize wall shear stress in hemodialysis population.

  • Andrés Moya-Rodríguez‎ et al.
  • Computational and structural biotechnology journal‎
  • 2022‎

End-Stage Renal Disease (ESRD) patients require arteriovenous fistulas (AVF) that allow a mature vein to withstand hemodialysis. Unfortunately, venous thrombosis and stenosis in the cephalic vein arch after AVF placement is common and heavily influenced by hemodynamics. To better assess forces and flow behavior in the cephalic arch, we have built patient-specific millifluidic models that allow us to explore the complex interplay between patient-specific vein geometry and fluctuating hemodynamics. These 3D models were created from patient-specific intravascular ultrasound and venogram images obtained three- and twelve-months post AVF creation and fabricated into soft elastomer-based millifluidic devices. Geometric validation of fabricated phantom millifluidic device shows successful replication of original computational 3D model. Millifluidic devices were perfused with a blood-mimicking fluid containing fluorescent tracer beads under steady-state physiologic cephalic vein flow conditions (20 mL/min). Particle image velocimetry was employed to calculate wall shear stress (WSS) across the cephalic arches. Experimental WSS profile evaluation reveals that the physiologic cephalic arch model yields WSS values within physiologic range [76-760 mPa]. Moreover, upon comparing WSS profiles across all models, it is noticeable that WSS values increase as vein diameter decreases, which further supports employed experimental and analysis strategy. The presented millifluidic devices show promise for experimental WSS characterization under pathologic flow conditions to contrast from calculated physiologic hemodynamics and better understand WSS influence on thrombosis and stenosis in hemodialysis patients.


Using Advanced Bioinformatics Tools to Identify Novel Therapeutic Candidates for Age-Related Macular Degeneration.

  • Urooba Nadeem‎ et al.
  • Translational vision science & technology‎
  • 2022‎

Age-related macular degeneration (AMD) is the most common cause of aging-related blindness in the developing world. Although medications can slow progressive wet AMD, currently, no drugs to treat dry-AMD are available. We use a systems or in silico biology analysis to identify chemicals and drugs approved by the Food and Drug Administration for other indications that can be used to treat and prevent AMD.


Exploring the tumor micro-environment in primary and metastatic tumors of different ovarian cancer histotypes.

  • Bingqing Xie‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Ovarian cancer is a highly heterogeneous disease consisting of at least five different histological subtypes with varying clinical features, cells of origin, molecular composition, risk factors, and treatments. While most single-cell studies have focused on High grade serous ovarian cancer, a comprehensive landscape of the constituent cell types and their interactions within the tumor microenvironment are yet to be established in the different ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and various histotypes are also needed to connect molecular signatures to pathological grading for personalized diagnosis and tailored treatment. In this study, we leveraged high-resolution single-cell RNA sequencing technology to elucidate the cellular compositions on 21 solid tumor samples collected from 12 patients with six ovarian cancer histotypes and both primary (ovaries) and metastatic (omentum, rectum) sites. The diverse collection allowed us to deconstruct the histotypes and tumor site-specific expression patterns of cells in the tumor, and identify key marker genes and ligand-receptor pairs that are active in the ovarian tumor microenvironment. Our findings can be used in improving precision disease stratification and optimizing treatment options.


Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment.

  • Kaitlyn Oliphant‎ et al.
  • Gut microbes‎
  • 2021‎

The early life microbiome plays critical roles in host development, shaping long-term outcomes including brain functioning. It is not known which initial infant colonizers elicit optimal neurodevelopment; thus, this study investigated the association between gut microbiome succession from the first week of life and head circumference growth (HCG), the earliest validated marker for neurodevelopment. Fecal samples were collected weekly from a preterm infant cohort during their neonatal intensive care unit stay and subjected to 16S rRNA gene sequencing for evaluating gut microbiome composition, in conjunction with clinical data and head circumference measurements. Preterm infants with suboptimal HCG trajectories had a depletion in the abundance/prevalence of Bacteroidota and Lachnospiraceae, independent of morbidity and caloric restriction. The severity of gut microbiome depletion matched the timing of significant HCG pattern separation between study groups at 30-week postmenstrual age demonstrating a potential mediating relationship resultant from clinical practices. Consideration of the clinical variables indicated that optimal infant microbiome succession is primarily driven by dispersal limitation (i.e., delivery mode) and secondarily by habitat filtering (i.e., antibiotics and enteral feeding). Bacteroidota and Lachnospiraceae are known core taxa of the adult microbiome, with roles in dietary glycan foraging, beneficial metabolite production and immunity, and our work provides evidence that their integration into the gut microbiome needs to occur early for optimal neurodevelopment.


High-Fat Diet Alters the Retinal Pigment Epithelium and Choroidal Transcriptome in the Absence of Gut Microbiota.

  • Jason Xiao‎ et al.
  • Cells‎
  • 2022‎

Relationships between retinal disease, diet, and the gut microbiome have started to emerge. In particular, high-fat diets (HFDs) are associated with the prevalence and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR). These effects are thought to be partly mediated by the gut microbiome, which modulates interactions between diet and host homeostasis. Nevertheless, the effects of HFDs on the retina and adjacent retinal pigment epithelium (RPE) and choroid at the transcriptional level, independent of gut microbiota, are not well-understood. In this study, we performed the high-throughput RNA-sequencing of germ-free (GF) mice to explore the transcriptional changes induced by HFD in the RPE/choroid. After filtering and cleaning the data, 649 differentially expressed genes (DEGs) were identified, with 616 genes transcriptionally upregulated and 33 genes downregulated by HFD compared to a normal diet (ND). Enrichment analysis for gene ontology (GO) using the DEGs was performed to analyze over-represented biological processes in the RPE/choroid of GF-HFD mice relative to GF-ND mice. GO analysis revealed the upregulation of processes related to angiogenesis, immune response, and the inflammatory response. Additionally, molecular functions that were altered involved extracellular matrix (ECM) binding, ECM structural constituents, and heparin binding. This study demonstrates novel data showing that HFDs can alter RPE/choroid tissue transcription in the absence of the gut microbiome.


A single cell-based computational platform to identify chemical compounds targeting desired sets of transcription factors for cellular conversion.

  • Menglin Zheng‎ et al.
  • Stem cell reports‎
  • 2023‎

Cellular conversion can be induced by perturbing a handful of key transcription factors (TFs). Replacement of direct manipulation of key TFs with chemical compounds offers a less laborious and safer strategy to drive cellular conversion for regenerative medicine. Nevertheless, identifying optimal chemical compounds currently requires large-scale screening of chemical libraries, which is resource intensive. Existing computational methods aim at predicting cell conversion TFs, but there are no methods for identifying chemical compounds targeting these TFs. Here, we develop a single cell-based platform (SiPer) to systematically prioritize chemical compounds targeting desired TFs to guide cellular conversions. SiPer integrates a large compendium of chemical perturbations on non-cancer cells with a network model and predicted known and novel chemical compounds in diverse cell conversion examples. Importantly, we applied SiPer to develop a highly efficient protocol for human hepatic maturation. Overall, SiPer provides a valuable resource to efficiently identify chemical compounds for cell conversion.


The functional domains for Bax∆2 aggregate-mediated caspase 8-dependent cell death.

  • Adriana Mañas‎ et al.
  • Experimental cell research‎
  • 2017‎

Bax∆2 is a functional pro-apoptotic Bax isoform having alterations in its N-terminus, but sharing the rest of its sequence with Baxα. Bax∆2 is unable to target mitochondria due to the loss of helix α1. Instead, it forms cytosolic aggregates and activates caspase 8. However, the functional domain(s) responsible for BaxΔ2 behavior have remained elusive. Here we show that disruption of helix α1 makes Baxα mimic the behavior of Bax∆2. However, the other alterations in the Bax∆2 N-terminus have no significant impact on aggregation or cell death. We found that the hallmark BH3 domain is necessary but not sufficient for aggregation-mediated cell death. We also noted that the core region shared by Baxα and Bax∆2 is required for the formation of large aggregates, which is essential for BaxΔ2 cytotoxicity. However, aggregation by itself is unable to trigger cell death without the C-terminus. Interestingly, the C-terminal helical conformation, not its primary sequence, appears to be critical for caspase 8 recruitment and activation. As Bax∆2 shares core and C-terminal sequences with most Bax isoforms, our results not only reveal a structural basis for Bax∆2-induced cell death, but also imply an intrinsic potential for aggregate-mediated caspase 8-dependent cell death in other Bax family members.


Microbiome function and neurodevelopment in Black infants: vitamin B12 emerges as a key factor.

  • Kaitlyn Oliphant‎ et al.
  • Gut microbes‎
  • 2024‎

The early life gut microbiome affects the developing brain, and therefore may serve as a target to support neurodevelopment of children living in stressful and under-resourced environments, such as Black youth living on the South Side of Chicago, for whom we observe racial disparities in health. Microbiome compositions/functions key to multiple neurodevelopmental facets have not been studied in Black children, a vulnerable population due to racial disparities in health; thus, a subsample of Black infants living in urban, low-income neighborhoods whose mothers participated in a prenatal nutrition study were recruited for testing associations between composition and function of the gut microbiome (16S rRNA gene sequencing, shotgun metagenomics, and targeted metabolomics of fecal samples) and neurodevelopment (developmental testing, maternal report of temperament, and observed stress regulation). Two microbiome community types, defined by high Lachnospiraceae or Enterobacteriaceae abundance, were discovered in this cohort from 16S rRNA gene sequencing analysis; the Enterobacteriaceae-dominant community type was significantly negatively associated with cognition and language scores, specifically in male children. Vitamin B12 biosynthesis emerged as a key microbiome function from shotgun metagenomics sequencing analysis, showing positive associations with all measured developmental skills (i.e., cognition, language, motor, surgency, effortful control, and observed stress regulation). Blautia spp. also were identified as substantial contributors of important microbiome functions, including vitamin B12 biosynthesis and related vitamin B12-dependent microbiome functions, anti-inflammatory microbial surface antigens, competitive mechanisms against pathobionts, and production of antioxidants. The results are promising with respect to the potential for exploring therapeutic candidates, such as vitamin B12 nutritional or Blautia spp. probiotic supplementation, to support the neurodevelopment of infants at risk for experiencing racial disparities in health.


Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

  • Xiang Li‎ et al.
  • Cell stem cell‎
  • 2017‎

Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state.


A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts.

  • Bingqing Xie‎ et al.
  • Cell research‎
  • 2019‎

Terminally differentiated cells can be generated by lineage reprogramming, which is, however, hindered by incomplete conversion with residual initial cell identity and partial functionality. Here, we demonstrate a new reprogramming strategy by mimicking the natural regeneration route, which permits generating expandable hepatic progenitor cells and functionally competent human hepatocytes. Fibroblasts were first induced into human hepatic progenitor-like cells (hHPLCs), which could robustly expand in vitro and efficiently engraft in vivo. Moreover, hHPLCs could be efficiently induced into mature human hepatocytes (hiHeps) in vitro, whose molecular identity highly resembles primary human hepatocytes (PHHs). Most importantly, hiHeps could be generated in large quantity and were functionally competent to replace PHHs for drug-metabolism estimation, toxicity prediction and hepatitis B virus infection modeling. Our results highlight the advantages of the progenitor stage for successful lineage reprogramming. This strategy is promising for generating other mature human cell types by lineage reprogramming.


High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota.

  • David Dao‎ et al.
  • Cells‎
  • 2021‎

The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.


Derivation of totipotent-like stem cells with blastocyst-like structure forming potential.

  • Yaxing Xu‎ et al.
  • Cell research‎
  • 2022‎

It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells, and that these TPS cells can be stably maintained long term in vitro. TPS cells shared features with 2-cell mouse embryos in terms of totipotency markers, transcriptome, chromatin accessibility and DNA methylation patterns. In vivo chimera formation assays show that these cells have embryonic and extraembryonic developmental potentials at the single-cell level. Moreover, TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Mechanistically, inhibition of HDAC1/2 and DOT1L activity and activation of RARγ signaling are important for inducing and maintaining totipotent features of TPS cells. Our study opens up a new path toward fully capturing totipotent stem cells in vitro.


Generation of functionally competent hepatic stellate cells from human stem cells to model liver fibrosis in vitro.

  • Xinyuan Lai‎ et al.
  • Stem cell reports‎
  • 2022‎

The detailed understanding of fibrogenesis has been hampered by a lack of important functional quiescence characteristics and an in vitro model to recapitulate hepatic stellate cell (HSC) activation. In our study, we establish robust endoderm- and mesoderm-sourced quiescent-like induced HSCs (iHSCs) derived from human pluripotent stem cells. Notably, iHSCs present features of mature HSCs, including accumulation of vitamin A in the lipid droplets and maintained quiescent features. In addition, iHSCs display a fibrogenic response and secrete collagen I in response to hepatoxicity caused by thioacetamide, acetaminophen, and hepatitis B and C virus infection. Antiviral therapy attenuated virally induced iHSC activation. Interestingly, endoderm- and mesoderm-derived iHSCs showed similar iHSC phenotypes. Therefore, we provide a novel and robust method to efficiently generate functional iHSCs from hESC and iPSC differentiation, which could be used as a model for hepatocyte toxicity prediction, anti-liver-fibrosis drug screening, and viral hepatitis-induced liver fibrosis.


Imbalanced gut microbiota predicts and drives the progression of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in a fast-food diet mouse model.

  • Na Fei‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Nonalcoholic fatty liver disease (NAFLD) is multifactorial in nature, affecting over a billion people worldwide. The gut microbiome has emerged as an associative factor in NAFLD, yet mechanistic contributions are unclear. Here, we show fast food (FF) diets containing high fat, added cholesterol, and fructose/glucose drinking water differentially impact short- vs. long-term NAFLD severity and progression in conventionally-raised, but not germ-free mice. Correlation and machine learning analyses independently demonstrate FF diets induce early and specific gut microbiota changes that are predictive of NAFLD indicators, with corresponding microbial community instability relative to control-fed mice. Shotgun metagenomics showed FF diets containing high cholesterol elevate fecal pro-inflammatory effectors over time, relating to a reshaping of host hepatic metabolic and inflammatory transcriptomes. FF diet-induced gut dysbiosis precedes onset and is highly predictive of NAFLD outcomes, providing potential insights into microbially-based pathogenesis and therapeutics.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: