Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm.

  • Bernike Kalverda‎ et al.
  • Cell‎
  • 2010‎

Nuclear pore complexes (NPCs) mediate transport across the nuclear envelope. In yeast, they also interact with active genes, attracting or retaining them at the nuclear periphery. In higher eukaryotes, some NPC components (nucleoporins) are also found in the nucleoplasm, with a so far unknown function. We have functionally characterized nucleoporin-chromatin interactions specifically at the NPC or within the nucleoplasm in Drosophila. We analyzed genomic interactions of full-length nucleoporins Nup98, Nup50, and Nup62 and nucleoplasmic and NPC-tethered forms of Nup98. We found that nucleoporins predominantly interacted with transcriptionally active genes inside the nucleoplasm, in particular those involved in developmental regulation and the cell cycle. A smaller set of nonactive genes interacted with the NPC. Genes strongly interacting with nucleoplasmic Nup98 were downregulated upon Nup98 depletion and activated on nucleoplasmic Nup98 overexpression. Thus, nucleoporins stimulate developmental and cell-cycle gene expression away from the NPC by interacting with these genes inside the nucleoplasm.


Characterization of the Drosophila melanogaster genome at the nuclear lamina.

  • Helen Pickersgill‎ et al.
  • Nature genetics‎
  • 2006‎

The nuclear lamina binds chromatin in vitro and is thought to function in its organization, but genes that interact with it are unknown. Using an in vivo approach, we identified approximately 500 Drosophila melanogaster genes that interact with B-type lamin (Lam). These genes are transcriptionally silent and late replicating, lack active histone marks and are widely spaced. These factors collectively predict lamin binding behavior, indicating that the nuclear lamina integrates variant and invariant chromatin features. Consistently, proximity of genomic regions to the nuclear lamina is partly conserved between cell types, and induction of gene expression or active histone marks reduces Lam binding. Lam target genes cluster in the genome, and these clusters are coordinately expressed during development. This genome-wide analysis gives clear insight into the nature and dynamic behavior of the genome at the nuclear lamina, and implies that intergenic DNA functions in the global organization of chromatin in the nucleus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: