2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Hierarchical microtubule organization controls axon caliber and transport and determines synaptic structure and stability.

  • Raiko Stephan‎ et al.
  • Developmental cell‎
  • 2015‎

The dimensions of axons and synaptic terminals determine cell-intrinsic properties of neurons; however, the cellular mechanisms selectively controlling establishment and maintenance of neuronal compartments remain poorly understood. Here, we show that two giant Drosophila Ankyrin2 isoforms, Ank2-L and Ank2-XL, and the MAP1B homolog Futsch form a membrane-associated microtubule-organizing complex that determines axonal diameter, supports axonal transport, and provides independent control of synaptic dimensions and stability. Ank2-L controls microtubule and synaptic stability upstream of Ank2-XL that selectively controls microtubule organization. Synergistically with Futsch, Ank2-XL provides three-dimensional microtubule organization and is required to establish appropriate synaptic dimensions and release properties. In axons, the Ank2-XL/Futsch complex establishes evenly spaced, grid-like microtubule organization and determines axonal diameter in the absence of neurofilaments. Reduced microtubule spacing limits anterograde transport velocities of mitochondria and synaptic vesicles. Our data identify control of microtubule architecture as a central mechanism to selectively control neuronal dimensions, functional properties, and connectivity.


Drosophila ankyrin 2 is required for synaptic stability.

  • Iris Koch‎ et al.
  • Neuron‎
  • 2008‎

Synaptic connections are stabilized through transsynaptic adhesion complexes that are anchored in the underlying cytoskeleton. The Drosophila neuromuscular junction (NMJs) serves as a model system to unravel genes required for the structural remodeling of synapses. In a mutagenesis screen for regulators of synaptic stability, we recovered mutations in Drosophila ankyrin 2 (ank2) affecting two giant Ank2 isoforms that are specifically expressed in the nervous system and associate with the presynaptic membrane cytoskeleton. ank2 mutant larvae show severe deficits in the stability of NMJs, resulting in a reduction in overall terminal size, withdrawal of synaptic boutons, and disassembly of presynaptic active zones. In addition, lack of Ank2 leads to disintegration of the synaptic microtubule cytoskeleton. Microtubules and microtubule-associated proteins fail to extend into distant boutons. Interestingly, Ank2 functions downstream of spectrin in the anchorage of synaptic microtubules, providing the cytoskeletal scaffold that is essential for synaptic stability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: