Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa.

  • Anjali M Rajadhyaksha‎ et al.
  • American journal of human genetics‎
  • 2010‎

The study of inherited retinal diseases has advanced our knowledge of the cellular and molecular mechanisms involved in sensory neural signaling. Dysfunction of two specific sensory modalities, vision and proprioception, characterizes the phenotype of the rare, autosomal-recessive disorder posterior column ataxia and retinitis pigmentosa (PCARP). Using targeted DNA capture and high-throughput sequencing, we analyzed the entire 4.2 Mb candidate sequence on chromosome 1q32 to find the gene mutated in PCARP in a single family. Employing comprehensive bioinformatic analysis and filtering, we identified a single-nucleotide coding variant in the feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), a gene encoding a heme-transporter protein. Sanger sequencing confirmed the FLVCR1 mutation in this family and identified different homozygous missense mutations located within the protein's transmembrane channel segment in two other unrelated families with PCARP. To determine whether the selective pathologic features of PCARP correlated with FLVCR1 expression, we examined wild-type mouse Flvcr1 mRNA levels in the posterior column of the spinal cord and the retina via quantitative real-time reverse-transcriptase PCR. The Flvcr1 mRNA levels were most abundant in the retina, followed by the posterior column of the spinal cord and other brain regions. These results suggest that aberrant FLVCR1 causes a selective degeneration of a subpopulation of neurons in the retina and the posterior columns of the spinal cord via dysregulation of heme or iron homeostasis. This finding broadens the molecular basis of sensory neural signaling to include common mechanisms that involve proprioception and vision.


Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III.

  • Isabelle Thiffault‎ et al.
  • Nature communications‎
  • 2015‎

A small proportion of 4H (Hypomyelination, Hypodontia and Hypogonadotropic Hypogonadism) or RNA polymerase III (POLR3)-related leukodystrophy cases are negative for mutations in the previously identified causative genes POLR3A and POLR3B. Here we report eight of these cases carrying recessive mutations in POLR1C, a gene encoding a shared POLR1 and POLR3 subunit, also mutated in some Treacher Collins syndrome (TCS) cases. Using shotgun proteomics and ChIP sequencing, we demonstrate that leukodystrophy-causative mutations, but not TCS mutations, in POLR1C impair assembly and nuclear import of POLR3, but not POLR1, leading to decreased binding to POLR3 target genes. This study is the first to show that distinct mutations in a gene coding for a shared subunit of two RNA polymerases lead to selective modification of the enzymes' availability leading to two different clinical conditions and to shed some light on the pathophysiological mechanism of one of the most common hypomyelinating leukodystrophies, POLR3-related leukodystrophy.


A National Spinal Muscular Atrophy Registry for Real-World Evidence.

  • Victoria L Hodgkinson‎ et al.
  • The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques‎
  • 2020‎

Spinal muscular atrophy (SMA) is a devastating rare disease that affects individuals regardless of ethnicity, gender, and age. The first-approved disease-modifying therapy for SMA, nusinursen, was approved by Health Canada, as well as by American and European regulatory agencies following positive clinical trial outcomes. The trials were conducted in a narrow pediatric population defined by age, severity, and genotype. Broad approval of therapy necessitates close follow-up of potential rare adverse events and effectiveness in the larger real-world population.


KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2.

  • Jean-Baptiste Rivière‎ et al.
  • American journal of human genetics‎
  • 2011‎

Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system.


Absence of neurological abnormalities in mice homozygous for the Polr3a G672E hypomyelinating leukodystrophy mutation.

  • Karine Choquet‎ et al.
  • Molecular brain‎
  • 2017‎

Recessive mutations in the ubiquitously expressed POLR3A gene cause one of the most frequent forms of childhood-onset hypomyelinating leukodystrophy (HLD): POLR3-HLD. POLR3A encodes the largest subunit of RNA Polymerase III (Pol III), which is responsible for the transcription of transfer RNAs (tRNAs) and a large array of other small non-coding RNAs. In order to study the central nervous system pathophysiology of the disease, we introduced the French Canadian founder Polr3a mutation c.2015G > A (p.G672E) in mice, generating homozygous knock-in (KI/KI) as well as compound heterozygous mice for one Polr3a KI and one null allele (KI/KO). Both KI/KI and KI/KO mice are viable and are able to reproduce. To establish if they manifest a motor phenotype, WT, KI/KI and KI/KO mice were submitted to a battery of behavioral tests over one year. The KI/KI and KI/KO mice have overall normal balance, muscle strength and general locomotion. Cerebral and cerebellar Luxol Fast Blue staining and measurement of levels of myelin proteins showed no significant differences between the three groups, suggesting that myelination is not overtly impaired in Polr3a KI/KI and KI/KO mice. Finally, expression levels of several Pol III transcripts in the brain showed no statistically significant differences. We conclude that the first transgenic mice with a leukodystrophy-causing Polr3a mutation do not recapitulate the childhood-onset HLD observed in the majority of human patients with POLR3A mutations, and provide essential information to guide selection of Polr3a mutations for developing future mouse models of the disease.


Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans.

  • Vafa Bayat‎ et al.
  • PLoS biology‎
  • 2012‎

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.


Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in POLR3A, POLR3B, and POLR1C.

  • Félixe Pelletier‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2021‎

4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date.


Restoring calcium homeostasis in Purkinje cells arrests neurodegeneration and neuroinflammation in the ARSACS mouse model.

  • Andrea Del Bondio‎ et al.
  • JCI insight‎
  • 2023‎

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS gene encoding sacsin, a huge protein highly expressed in cerebellar Purkinje cells (PCs). Patients with ARSACS, as well as mouse models, display early degeneration of PCs, but the underlying mechanisms remain unexplored, with no available treatments. In this work, we demonstrated aberrant calcium (Ca2+) homeostasis and its impact on PC degeneration in ARSACS. Mechanistically, we found pathological elevation in Ca2+-evoked responses in Sacs-/- PCs as the result of defective mitochondria and ER trafficking to distal dendrites and strong downregulation of key Ca2+ buffer proteins. Alteration of cytoskeletal linkers, which we identified as specific sacsin interactors, likely account for faulty organellar trafficking in Sacs-/- cerebellum. Based on this pathogenetic cascade, we treated Sacs-/- mice with Ceftriaxone, a repurposed drug that exerts neuroprotection by limiting neuronal glutamatergic stimulation and, thus, Ca2+ fluxes into PCs. Ceftriaxone treatment significantly improved motor performances of Sacs-/- mice, at both pre- and postsymptomatic stages. We correlated this effect to restored Ca2+ homeostasis, which arrests PC degeneration and attenuates secondary neuroinflammation. These findings disclose key steps in ARSACS pathogenesis and support further optimization of Ceftriaxone in preclinical and clinical settings for the treatment of patients with ARSACS.


Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies.

  • Véronique Bolduc‎ et al.
  • American journal of human genetics‎
  • 2010‎

The recently described human anion channel Anoctamin (ANO) protein family comprises at least ten members, many of which have been shown to correspond to calcium-activated chloride channels. To date, the only reported human mutations in this family of genes are dominant mutations in ANO5 (TMEM16E, GDD1) in the rare skeletal disorder gnathodiaphyseal dysplasia. We have identified recessive mutations in ANO5 that result in a proximal limb-girdle muscular dystrophy (LGMD2L) in three French Canadian families and in a distal non-dysferlin Miyoshi myopathy (MMD3) in Dutch and Finnish families. These mutations consist of a splice site, one base pair duplication shared by French Canadian and Dutch cases, and two missense mutations. The splice site and the duplication mutations introduce premature-termination codons and consequently trigger nonsense-mediated mRNA decay, suggesting an underlining loss-of-function mechanism. The LGMD2L phenotype is characterized by proximal weakness, with prominent asymmetrical quadriceps femoris and biceps brachii atrophy. The MMD3 phenotype is associated with distal weakness, of calf muscles in particular. With the use of electron microscopy, multifocal sarcolemmal lesions were observed in both phenotypes. The phenotypic heterogeneity associated with ANO5 mutations is reminiscent of that observed with Dysferlin (DYSF) mutations that can cause both LGMD2B and Miyoshi myopathy (MMD1). In one MMD3-affected individual, defective membrane repair was documented on fibroblasts by membrane-resealing ability assays, as observed in dysferlinopathies. Though the function of the ANO5 protein is still unknown, its putative calcium-activated chloride channel function may lead to important insights into the role of deficient skeletal muscle membrane repair in muscular dystrophies.


Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy.

  • Martine Tétreault‎ et al.
  • American journal of human genetics‎
  • 2011‎

Mutations in POLR3A encoding the largest subunit of RNA polymerase III (Pol III) were found to be responsible for the majority of cases presenting with three clinically overlapping hypomyelinating leukodystrophy phenotypes. We uncovered in three cases without POLR3A mutation recessive mutations in POLR3B, which codes for the second largest subunit of Pol III. Mutations in genes coding for Pol III subunits are a major cause of childhood-onset hypomyelinating leukodystrophies with prominent cerebellar dysfunction, oligodontia, and hypogonadotropic hypogonadism.


Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy.

  • Geneviève Bernard‎ et al.
  • American journal of human genetics‎
  • 2011‎

Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterized by abnormal white matter visible by brain imaging. It is estimated that at least 30% to 40% of individuals remain without a precise diagnosis despite extensive investigations. We mapped tremor-ataxia with central hypomyelination (TACH) to 10q22.3-23.1 in French-Canadian families and sequenced candidate genes within this interval. Two missense and one insertion mutations in five individuals with TACH were uncovered in POLR3A, which codes for the largest subunit of RNA polymerase III (Pol III). Because these families were mapped to the same locus as leukodystrophy with oligodontia (LO) and presented clinical and radiological overlap with individuals with hypomyelination, hypodontia and hypogonadotropic hypogonadism (4H) syndrome, we sequenced this gene in nine individuals with 4H and eight with LO. In total, 14 recessive mutations were found in 19 individuals with TACH, 4H, or LO, establishing that these leukodystrophies are allelic. No individual was found to carry two nonsense mutations. Immunoblots on 4H fibroblasts and on the autopsied brain of an individual diagnosed with 4H documented a significant decrease in POLR3A levels, and there was a more significant decrease in the cerebral white matter compared to that in the cortex. Pol III has a wide set of target RNA transcripts, including all nuclear-coded tRNA. We hypothesize that the decrease in POLR3A leads to dysregulation of the expression of certain Pol III targets and thereby perturbs cytoplasmic protein synthesis. This type of broad alteration in protein synthesis is predicted to occur in other leukoencephalopathies such as hypomyelinating leukodystrophy-3, caused by mutations in aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1).


The ARSACS disease protein sacsin controls lysosomal positioning and reformation by regulating microtubule dynamics.

  • Vincent Francis‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a fatal brain disorder featuring cerebellar neurodegeneration leading to spasticity and ataxia. This disease is caused by mutations in the SACS gene that encodes sacsin, a massive 4579-amino acid protein with multiple modular domains. However, molecular details of the function of sacsin are not clear. Here, using live cell imaging and biochemistry, we demonstrate that sacsin binds to microtubules and regulates microtubule dynamics. Loss of sacsin function in various cell types, including knockdown and KO primary neurons and patient fibroblasts, leads to alterations in lysosomal transport, positioning, function, and reformation following autophagy. Each of these phenotypic changes is consistent with altered microtubule dynamics. We further show the effects of sacsin are mediated at least in part through interactions with JIP3, an adapter for microtubule motors. These data reveal a new function for sacsin that explains its previously reported roles and phenotypes.


The J Domain of Sacsin Disrupts Intermediate Filament Assembly.

  • Afrooz Dabbaghizadeh‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Autosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS) is caused by mutation in the SACS gene resulting in loss of function of the protein sacsin. A key feature is the formation of abnormal bundles of neurofilaments (NF) in neurons and vimentin intermediate filaments (IF) in cultured fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones. The SacsJ domain resolved NF bundles in cultured Sacs-/- neurons. Having studied the mechanism using NF assembled in vitro from purified NF proteins, we report that the SacsJ domain interacts with NF proteins to disassemble NFL filaments, and to inhibit their initial assembly. A cell-penetrating peptide derived from this domain, SacsJ-myc-TAT was efficient in disassembling NF bundles in cultured Sacs-/- motor neurons, restoring the NF network; however, there was some loss of vimentin IF and NF in cultured Sacs+/+ fibroblasts and motor neurons, respectively. These results suggest that sacsin through its SacsJ domain is a key regulator of NF and vimentin IF networks in cells.


Leukodystrophy-associated POLR3A mutations down-regulate the RNA polymerase III transcript and important regulatory RNA BC200.

  • Karine Choquet‎ et al.
  • The Journal of biological chemistry‎
  • 2019‎

RNA polymerase III (Pol III) is an essential enzyme responsible for the synthesis of several small noncoding RNAs, a number of which are involved in mRNA translation. Recessive mutations in POLR3A, encoding the largest subunit of Pol III, cause POLR3-related hypomyelinating leukodystrophy (POLR3-HLD), characterized by deficient central nervous system myelination. Identification of the downstream effectors of pathogenic POLR3A mutations has so far been elusive. Here, we used CRISPR-Cas9 to introduce the POLR3A mutation c.2554A→G (p.M852V) into human cell lines and assessed its impact on Pol III biogenesis, nuclear import, DNA occupancy, transcription, and protein levels. Transcriptomic profiling uncovered a subset of transcripts vulnerable to Pol III hypofunction, including a global reduction in tRNA levels. The brain cytoplasmic BC200 RNA (BCYRN1), involved in translation regulation, was consistently affected in all our cellular models, including patient-derived fibroblasts. Genomic BC200 deletion in an oligodendroglial cell line led to major transcriptomic and proteomic changes, having a larger impact than those of POLR3A mutations. Upon differentiation, mRNA levels of the MBP gene, encoding myelin basic protein, were significantly decreased in POLR3A-mutant cells. Our findings provide the first evidence for impaired Pol III transcription in cellular models of POLR3-HLD and identify several candidate effectors, including BC200 RNA, having a potential role in oligodendrocyte biology and involvement in the disease.


Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the Study of Canadian Genetic Isolates.

  • Ronald G Lafreniere‎ et al.
  • American journal of human genetics‎
  • 2004‎

Hereditary sensory and autonomic neuropathy (HSAN) type II is an autosomal recessive disorder characterized by impairment of pain, temperature, and touch sensation owing to reduction or absence of peripheral sensory neurons. We identified two large pedigrees segregating the disorder in an isolated population living in Newfoundland and performed a 5-cM genome scan. Linkage analysis identified a locus mapping to 12p13.33 with a maximum LOD score of 8.4. Haplotype sharing defined a candidate interval of 1.06 Mb containing all or part of seven annotated genes, sequencing of which failed to detect causative mutations. Comparative genomics revealed a conserved ORF corresponding to a novel gene in which we found three different truncating mutations among five families including patients from rural Quebec and Nova Scotia. This gene, termed "HSN2," consists of a single exon located within intron 8 of the PRKWNK1 gene and is transcribed from the same strand. The HSN2 protein may play a role in the development and/or maintenance of peripheral sensory neurons or their supporting Schwann cells.


A "Fille du Roy" introduced the T14484C Leber hereditary optic neuropathy mutation in French Canadians.

  • Anne-Marie Laberge‎ et al.
  • American journal of human genetics‎
  • 2005‎

The predominance of the T14484C mutation in French Canadians with Leber hereditary optic neuropathy is due to a founder effect. By use of genealogical reconstructions of maternal lineages, a woman married in Quebec City in 1669 is identified as the shared female ancestor for 11 of 13 affected individuals, who were previously not known to be related. These individuals carry identical mitochondrial haplogroups. The current geographic distribution of French Canadian cases overlaps with that of the founder's female descendants in 1800. This is the first example of genealogical reconstruction to identify the introduction of a mitochondrial mutation by a woman in a founder population.


PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

  • Louis-Philippe Corbeil-Girard‎ et al.
  • Neurobiology of disease‎
  • 2005‎

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.


Altered organization of the intermediate filament cytoskeleton and relocalization of proteostasis modulators in cells lacking the ataxia protein sacsin.

  • Emma J Duncan‎ et al.
  • Human molecular genetics‎
  • 2017‎

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the gene SACS, encoding the 520 kDa protein sacsin. Although sacsin's physiological role is largely unknown, its sequence domains suggest a molecular chaperone or protein quality control function. Consequences of its loss include neurofilament network abnormalities, specifically accumulation and bundling of perikaryal and dendritic neurofilaments. To investigate if loss of sacsin affects intermediate filaments more generally, the distribution of vimentin was analysed in ARSACS patient fibroblasts and in cells where sacsin expression was reduced. Abnormal perinuclear accumulation of vimentin filaments, which sometimes had a cage-like appearance, occurred in sacsin-deficient cells. Mitochondria and other organelles were displaced to the periphery of vimentin accumulations. Reorganization of the vimentin network occurs in vitro under stress conditions, including when misfolded proteins accumulate. In ARSACS patient fibroblasts HSP70, ubiquitin and the autophagy-lysosome pathway proteins Lamp2 and p62 relocalized to the area of the vimentin accumulation. There was no overall increase in ubiquitinated proteins, suggesting the ubiquitin-proteasome system was not impaired. There was evidence for alterations in the autophagy-lysosome pathway. Specifically, in ARSACS HDFs cellular levels of Lamp2 were elevated while levels of p62, which is degraded in autophagy, were decreased. Moreover, autophagic flux was increased in ARSACS HDFs under starvation conditions. These data show that loss of sacsin effects the organization of intermediate filaments in multiple cell types, which impacts the cellular distribution of other organelles and influences autophagic activity.


Clinical and genetic keys to cerebellar ataxia due to FGF14 GAA expansions.

  • Jean-Loup Méreaux‎ et al.
  • EBioMedicine‎
  • 2024‎

SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability.


Sacs R272C missense homozygous mice develop an ataxia phenotype.

  • Roxanne Larivière‎ et al.
  • Molecular brain‎
  • 2019‎

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS [MIM 270550]) is an early-onset neurodegenerative disorder caused by mutations in the SACS gene. Over 200 SACS mutations have been identified. Most mutations lead to a complete loss of a sacsin, a large 520 kD protein, although some missense mutations are associated with low levels of sacsin expression. We previously showed that Sacs knock-out mice demonstrate early-onset ataxic phenotype with neurofilament bundling in many neuronal populations. To determine if the preservation of some mutated sacsin protein resulted in the same cellular and behavioral alterations, we generated mice expressing an R272C missense mutation, a homozygote mutation found in some affected patients. Though SacsR272C mice express 21% of wild type brain sacsin and sacsin is found in many neurons, they display similar abnormalities to Sacs knock-out mice, including the development of an ataxic phenotype, reduced Purkinje cell firing rates, and somatodendritic neurofilament bundles in Purkinje cells and other neurons. Together our results support that Sacs missense mutation largely lead to loss of sacsin function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: