Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

  • Nicola K Abram‎ et al.
  • PloS one‎
  • 2016‎

Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds.


Nasalization by Nasalis larvatus: Larger noses audiovisually advertise conspecifics in proboscis monkeys.

  • Hiroki Koda‎ et al.
  • Science advances‎
  • 2018‎

Male proboscis monkeys have uniquely enlarged noses that are prominent adornments, which may have evolved through their sexually competitive harem group social system. Nevertheless, the ecological roles of the signals encoded by enlarged noses remain unclear. We found significant correlations among nose, body, and testis sizes and a clear link between nose size and number of harem females. Therefore, there is evidence supporting both male-male competition and female choice as causal factors in the evolution of enlarged male noses. We also observed that nasal enlargement systematically modifies the resonance properties of male vocalizations, which probably encode male quality. Our results indicate that the audiovisual contributions of enlarged male noses serve as advertisements to females in their mate selection. This is the first primate research to evaluate the evolutionary processes involved in linking morphology, acoustics, and socioecology with unique masculine characteristics.


Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species.

  • Alexander Nater‎ et al.
  • Current biology : CB‎
  • 2017‎

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.


Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros.

  • Edana Lord‎ et al.
  • Current biology : CB‎
  • 2020‎

Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.


External environmental conditions impact nocturnal activity levels in proboscis monkeys (Nasalis larvatus) living in Sabah, Malaysia.

  • Sophie J Kooros‎ et al.
  • American journal of primatology‎
  • 2022‎

Recently, several diurnal nonhuman anthropoids have been identified displaying varying degrees of nocturnal activity, which can be influenced by activity "masking effects"-external events or conditions that suppress or trigger activity, temporarily altering normal activity patterns. Environmental masking characteristics include nocturnal temperature, rainfall, cloud cover, and moon brightness. Similarly, other ecological characteristics, including proximity to humans and predators and daytime activity, may also trigger or suppress nocturnal activity. Understanding the effects of external conditions on activity patterns is pertinent to effective species conservation. We investigated the presence of nocturnal activity and the influence of masking effects on the level of nocturnal activity displayed by wild proboscis monkeys (Nasalis larvatus) in Sabah, Malaysian Borneo. Dual-axis accelerometers were attached by collar to six male proboscis monkeys from different one-male, multi-female groups to record activity continuously (165-401 days each). We measured the monkeys' nocturnal and diurnal activity levels and investigated the effects of seven potential masking effects. Nocturnal activity was much lower than diurnal activity. Still, proboscis monkeys did display varying levels of nocturnal activity. Generalized linear mixed models identified higher nocturnal activity in the study individuals during nights with cooler temperatures, higher rainfall, and after higher diurnal activity. These three masking effects affected nocturnal activity levels during the observation period that informed our model, although they did not predict nocturnal activity outside of this period. While the generalizability of these results remains uncertain, this study highlights the utility of accelerometers in identifying activity patterns and masking effects that create variability in these patterns.


Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms.

  • Maja P Greminger‎ et al.
  • BMC genomics‎
  • 2014‎

High-throughput sequencing has opened up exciting possibilities in population and conservation genetics by enabling the assessment of genetic variation at genome-wide scales. One approach to reduce genome complexity, i.e. investigating only parts of the genome, is reduced-representation library (RRL) sequencing. Like similar approaches, RRL sequencing reduces ascertainment bias due to simultaneous discovery and genotyping of single-nucleotide polymorphisms (SNPs) and does not require reference genomes. Yet, generating such datasets remains challenging due to laboratory and bioinformatical issues. In the laboratory, current protocols require improvements with regards to sequencing homologous fragments to reduce the number of missing genotypes. From the bioinformatical perspective, the reliance of most studies on a single SNP caller disregards the possibility that different algorithms may produce disparate SNP datasets.


A pinworm's tale: The evolutionary history of Lemuricola (Protenterobius) nycticebi.

  • Liesbeth Frias‎ et al.
  • International journal for parasitology. Parasites and wildlife‎
  • 2019‎

Lemuricola (Protenterobius) nycticebi is the only pinworm species known to infect strepsirrhine primates outside Africa, and the only pinworm species yet described in slow lorises. Here, we provided a detailed morphological comparison of female and male worms, and a first description of fourth-stage larvae collected from free-living slow lorises (Nycticebus menagensis) in Sabah, Malaysian Borneo. Using mitochondrial and nuclear markers, we also reconstructed the species' phylogenetic relationship with other pinworms infecting primates. Both morphological and molecular results indicated a distinct association between L. (P.) nycticebi and its host. However, while taxonomy identified this species as a member of the Lemuricola clade and grouped pinworms infecting lemurs and slow lorises together, phylogenetic reconstruction split them, placing L. (P.) nycticebi within the Enterobius clade. Our results suggest that L. (P.) nycticebi may represent a different taxon altogether, and that it is more closely related to pinworm species infecting Old World primates outside Madagascar. Pongobius pongoi (Foitová et al., 2008) n. comb. is also proposed.


Dispersal and genetic structure in a tropical small mammal, the Bornean tree shrew (Tupaia longipes), in a fragmented landscape along the Kinabatangan River, Sabah, Malaysia.

  • Jennifer Brunke‎ et al.
  • BMC genetics‎
  • 2020‎

Constraints in migratory capabilities, such as the disruption of gene flow and genetic connectivity caused by habitat fragmentation, are known to affect genetic diversity and the long-term persistence of populations. Although negative population trends due to ongoing forest loss are widespread, the consequence of habitat fragmentation on genetic diversity, gene flow and genetic structure has rarely been investigated in Bornean small mammals. To fill this gap in knowledge, we used nuclear and mitochondrial DNA markers to assess genetic diversity, gene flow and the genetic structure in the Bornean tree shrew, Tupaia longipes, that inhabits forest fragments of the Lower Kinabatangan Wildlife Sanctuary, Sabah. Furthermore, we used these markers to assess dispersal regimes in male and female T. longipes.


Fecal parasite risk in the endangered proboscis monkey is higher in an anthropogenically managed forest environment compared to a riparian rain forest in Sabah, Borneo.

  • Annette Klaus‎ et al.
  • PloS one‎
  • 2018‎

Understanding determinants shaping infection risk of endangered wildlife is a major topic in conservation medicine. The proboscis monkey, Nasalis larvatus, an endemic primate flagship species for conservation in Borneo, is endangered through habitat loss, but can still be found in riparian lowland and mangrove forests, and in some protected areas. To assess socioecological and anthropogenic influence on intestinal helminth infections in N. larvatus, 724 fecal samples of harem and bachelor groups, varying in size and the number of juveniles, were collected between June and October 2012 from two study sites in Malaysian Borneo: 634 samples were obtained from groups inhabiting the Lower Kinabatangan Wildlife Sanctuary (LKWS), 90 samples were collected from groups of the Labuk Bay Proboscis Monkey Sanctuary (LBPMS), where monkeys are fed on stationary feeding platforms. Parasite risk was quantified by intestinal helminth prevalence, host parasite species richness (PSR), and eggs per gram feces (epg). Generalized linear mixed effect models were applied to explore whether study site, group type, group size, the number of juveniles per group, and sampling month predict parasite risk. At the LBPMS, prevalence and epg of Trichuris spp., strongylids, and Strongyloides spp. but not Ascaris spp., as well as host PSR were significantly elevated. Only for Strongyloides spp., prevalence showed significant changes between months; at both sites, the beginning rainy season with increased precipitation was linked to higher prevalence, suggesting the external life cycle of Strongyloides spp. to benefit from humidity. Higher prevalence, epgs, and PSR within the LBPMS suggest that anthropogenic factors shape host infection risk more than socioecological factors, most likely via higher re-infection rates and chronic stress. Noninvasive measurement of fecal parasite stages is an important tool for assessing transmission dynamics and infection risks for endangered tropical wildlife. Findings will contribute to healthcare management in nature and in anthropogenically managed environments.


Dispatch from the field II: the mystery of the red and blue Opadometa male (Araneae, Tetragnathidae, Opadometa sarawakensis).

  • Jeremy A Miller‎ et al.
  • Biodiversity data journal‎
  • 2018‎

Males of Opadometa are difficult to associate with conspecific females, and sex-matching errors may persist in the taxonomic literature. Recommended best practices for definitive sex matching in this genus suggest finding a male in the web of a female, or better yet, mating pairs.


Global Demand for Natural Resources Eliminated More Than 100,000 Bornean Orangutans.

  • Maria Voigt‎ et al.
  • Current biology : CB‎
  • 2018‎

Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT.


Physiological implications of life at the forest interface of oil palm agriculture: blood profiles of wild Malay civets (Viverra tangalunga).

  • Meaghan N Evans‎ et al.
  • Conservation physiology‎
  • 2020‎

Agricultural development is a major threat to global biodiversity, and effective conservation actions are crucial. Physiological repercussions of life alongside human-modified landscapes can undermine adaptable species' health and population viability; however, baseline data are lacking for many wildlife species. We assessed the physiological status of a generalist carnivore, the Malay civet (Viverra tangalunga), persisting within an extensively human-modified system in Sabah, Malaysian Borneo. We characterized hematology and serum biochemistry panels from civets sampled across a mosaic landscape comprising tropical forest fragments and oil palm plantations. Intra-population variation in certain blood parameters were explained by expected biological drivers such as sex, age category and sampling season. Furthermore, we determined several erythrocyte measures, immune cell counts and dietary biochemistry markers significantly varied with proximity to oil palm plantation boundaries. These findings were supported by a case study, whereby blood profiles of GPS collared male civets were contrasted based on their exclusive use of forests or use of oil palm plantations. These data provide robust and valuable first insights into this species' physiological status and suggest agricultural landscapes are impacting the persisting population.


Effectiveness of 20 years of conservation investments in protecting orangutans.

  • Truly Santika‎ et al.
  • Current biology : CB‎
  • 2022‎

Conservation strategies are rarely systematically evaluated, which reduces transparency, hinders the cost-effective deployment of resources, and hides what works best in different contexts. Using data on the iconic and critically endangered orangutan (Pongo spp.), we developed a novel spatiotemporal framework for evaluating conservation investments. We show that around USD 1 billion was invested between 2000 and 2019 into orangutan conservation by governments, nongovernmental organizations, companies, and communities. Broken down by allocation to different conservation strategies, we find that habitat protection, patrolling, and public outreach had the greatest return on investment for maintaining orangutan populations. Given the variability in threats, land-use opportunity costs, and baseline remunerations in different regions, there were differential benefits per dollar invested across conservation activities and regions. We show that although challenging from a data and analysis perspective, it is possible to fully understand the relationships between conservation investments and outcomes and the external factors that influence these outcomes. Such analyses can provide improved guidance toward a more effective biodiversity conservation. Insights into the spatiotemporal interplays between the costs and benefits driving effectiveness can inform decisions about the most suitable orangutan conservation strategies for halting population declines. Although our study focuses on the three extant orangutan species of Sumatra and Borneo, our findings have broad application for evidence-based conservation science and practice worldwide.


Isolation of Bacteria from Freeze-Dried Samples and the Functional Characterization of Species-Specific Lactic Acid Bacteria with a Comparison of Wild and Captive Proboscis Monkeys.

  • Nami Suzuki-Hashido‎ et al.
  • Microorganisms‎
  • 2023‎

Previously, we isolated a novel lactic acid bacteria species (Lactobacillus nasalidis) from the fresh forestomach contents of a captive proboscis monkey (Nasalis larvatus) in a Japanese zoo. In this study, we isolated two strains of L. nasalidis from the freeze-dried forestomach contents of a wild proboscis monkey inhabiting a riverine forest in Malaysia. The samples had been stored for more than six years. Phenotypic analysis showed that strains isolated from the wild individual had more diverse sugar utilization and lower salt tolerance than strains previously isolated from the captive counterpart. These phenotypic differences are most likely induced by feeding conditions; wild individuals consume a wide variety of natural food, unlike their zoo-raised counterparts that consume formula feed with sodium sufficiency. Since 16s rRNA sequences of L. nasalidis were detected in the previously created 16S rRNA libraries of wild, provisioned, and captive proboscis monkeys in Malaysia and Japan, L. nasalidis may be an essential bacterium of the foregut microbial community of the proboscis monkey. The currently established method for the isolation of gut bacteria from freeze-dried samples under storage will be applicable to many already-stored precious samples.


Two different high throughput sequencing approaches identify thousands of de novo genomic markers for the genetically depleted Bornean elephant.

  • Reeta Sharma‎ et al.
  • PloS one‎
  • 2012‎

High throughput sequencing technologies are being applied to an increasing number of model species with a high-quality reference genome. The application and analyses of whole-genome sequence data in non-model species with no prior genomic information are currently under way. Recent sequencing technologies provide new opportunities for gathering genomic data in natural populations, laying the empirical foundation for future research in the field of conservation and population genomics. Here we present the case study of the Bornean elephant, which is the most endangered subspecies of Asian elephant and exhibits very low genetic diversity. We used two different sequencing platforms, the Roche 454 FLX (shotgun) and Illumina, GAIIx (Restriction site associated DNA, RAD) to evaluate the feasibility of the two methodologies for the discovery of de novo markers (single nucleotide polymorphism, SNPs and microsatellites) using low coverage data. Approximately, 6,683 (shotgun) and 14,724 (RAD) SNPs were detected within our elephant sequence dataset. Genotyping of a representative sample of 194 SNPs resulted in a SNP validation rate of ~83 to 94% and 17% of the loci were polymorphic with a low diversity (H(o)=0.057). Different numbers of microsatellites were identified through shotgun (27,226) and RAD (868) techniques. Out of all di-, tri-, and tetra-microsatellite loci, 1,706 loci had sufficient flanking regions (shotgun) while only 7 were found with RAD. All microsatellites were monomorphic in the Bornean but polymorphic in another elephant subspecies. Despite using different sample sizes, and the well known differences in the two platforms used regarding sequence length and throughput, the two approaches showed high validation rate. The approaches used here for marker development in a threatened species demonstrate the utility of high throughput sequencing technologies as a starting point for the development of genomic tools in a non-model species and in particular for a species with low genetic diversity.


Dispatch from the field: ecology of ground-web-building spiders with description of a new species (Araneae, Symphytognathidae).

  • Jeremy A Miller‎ et al.
  • Biodiversity data journal‎
  • 2014‎

Crassignathadanaugirangensis sp. n. (Araneae: Symphytognathidae) was discovered during a tropical ecology field course held at the Danau Girang Field Centre in Sabah, Malaysia. A taxonomic description and accompanying ecological study were completed as course activities. To assess the ecology of this species, which belongs to the ground-web-building spider community, three habitat types were surveyed: riparian forest, recently inundated riverine forest, and oil palm plantation. Crassignathadanaugirangensis sp. n. is the most abundant ground-web-building spider species in riparian forest; it is rare or absent from the recently inundated forest and was not found in a nearby oil palm plantation. The availability of this taxonomic description may help facilitate the accumulation of data about this species and the role of inundated riverine forest in shaping invertebrate communities.


Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean orang-utan?

  • Serge A Wich‎ et al.
  • PloS one‎
  • 2012‎

The geographic distribution of Bornean orang-utans and its overlap with existing land-use categories (protected areas, logging and plantation concessions) is a necessary foundation to prioritize conservation planning. Based on an extensive orang-utan survey dataset and a number of environmental variables, we modelled an orang-utan distribution map. The modelled orang-utan distribution map covers 155,106 km(2) (21% of Borneo's landmass) and reveals four distinct distribution areas. The most important environmental predictors are annual rainfall and land cover. The overlap of the orang-utan distribution with land-use categories reveals that only 22% of the distribution lies in protected areas, but that 29% lies in natural forest concessions. A further 19% and 6% occurs in largely undeveloped oil palm and tree plantation concessions, respectively. The remaining 24% of the orang-utan distribution range occurs outside of protected areas and outside of concessions. An estimated 49% of the orang-utan distribution will be lost if all forest outside of protected areas and logging concessions is lost. To avoid this potential decline plantation development in orang-utan habitats must be halted because it infringes on national laws of species protection. Further growth of the plantation sector should be achieved through increasing yields in existing plantations and expansion of new plantations into areas that have already been deforested. To reach this goal a large scale island-wide land-use masterplan is needed that clarifies which possible land uses and managements are allowed in the landscape and provides new standardized strategic conservation policies. Such a process should make much better use of non-market values of ecosystem services of forests such as water provision, flood control, carbon sequestration, and sources of livelihood for rural communities. Presently land use planning is more driven by vested interests and direct and immediate economic gains, rather than by approaches that take into consideration social equity and environmental sustainability.


Chemical immobilization of free-ranging and captive Sunda clouded leopards (Neofelis diardi) with two anesthetic protocols: medetomidine-ketamine and tiletamine-zolazepam.

  • Fernando Nájera‎ et al.
  • The Journal of veterinary medical science‎
  • 2017‎

There is currently no available information regarding the veterinary management of Sunda clouded leopards (Neofelis diardi), either in captivity or in the wild. In this study, 12 Sunda clouded leopards were anesthetized between January 2008 and February 2014 for medical exams, and/or GPS-collaring. Seven wild-caught individuals were kept in captivity and 5 free-ranging animals were captured by cage traps. Two anesthesia combinations were used: medetomidine-ketamine (M-K) or tiletamine-zolazepam (T-Z). Atipamezole (0.2 mg/kg im) was used as an antagonist for medetomidine. Medetomidine (range: 0.039-0.054 mg/kg) and ketamine (range: 3-4.39 mg/kg) were administered during 5 immobilizations, resulting in median induction times of 7 min. After a median anesthesia time of 56 min, atipamezole was injected, observing effects of antagonism at a median time of 12 min. T-Z (range: 6.8-10.8 mg/kg) was administered on 7 occasions. Median induction times observed with this combination were shorter than with M-K (4 min vs 7 min; P=0.04), and anesthesia and recovery times were significantly longer (244 and 35 min vs 56 and 16 min, respectively; P=0.02). Lower heart rates were measured in the M-K group, while lower rectal temperatures were found in the T-Z group. Both combinations resulted in safe and reliable immobilizations, although given the favorable anesthesia and recovery times of M-K, we recommend this approach over T-Z for the veterinary handling of Sunda clouded leopards.


Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven?

  • Marc Ancrenaz‎ et al.
  • Scientific reports‎
  • 2014‎

The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated.


Synergies for improving oil palm production and forest conservation in floodplain landscapes.

  • Nicola K Abram‎ et al.
  • PloS one‎
  • 2014‎

Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world's tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha-yr-$637/ha-yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha-yr-$-65/ha-yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: