Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila.

  • Sonal Nagarkar-Jaiswal‎ et al.
  • eLife‎
  • 2015‎

Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.


Regulation of alternative splicing in Drosophila by 56 RNA binding proteins.

  • Angela N Brooks‎ et al.
  • Genome research‎
  • 2015‎

Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.


An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila.

  • James B Brown‎ et al.
  • Communications biology‎
  • 2021‎

The gut microbiome produces vitamins, nutrients, and neurotransmitters, and helps to modulate the host immune system-and also plays a major role in the metabolism of many exogenous compounds, including drugs and chemical toxicants. However, the extent to which specific microbial species or communities modulate hazard upon exposure to chemicals remains largely opaque. Focusing on the effects of collateral dietary exposure to the widely used herbicide atrazine, we applied integrated omics and phenotypic screening to assess the role of the gut microbiome in modulating host resilience in Drosophila melanogaster. Transcriptional and metabolic responses to these compounds are sex-specific and depend strongly on the presence of the commensal microbiome. Sequencing the genomes of all abundant microbes in the fly gut revealed an enzymatic pathway responsible for atrazine detoxification unique to Acetobacter tropicalis. We find that Acetobacter tropicalis alone, in gnotobiotic animals, is sufficient to rescue increased atrazine toxicity to wild-type, conventionally reared levels. This work points toward the derivation of biotic strategies to improve host resilience to environmental chemical exposures, and illustrates the power of integrative omics to identify pathways responsible for adverse health outcomes.


The developmental transcriptome of Drosophila melanogaster.

  • Brenton R Graveley‎ et al.
  • Nature‎
  • 2011‎

Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Next-generation large-scale binary protein interaction network for Drosophila melanogaster.

  • Hong-Wen Tang‎ et al.
  • Nature communications‎
  • 2023‎

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


The Release 6 reference sequence of the Drosophila melanogaster genome.

  • Roger A Hoskins‎ et al.
  • Genome research‎
  • 2015‎

Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.


Genome-guided transcript assembly by integrative analysis of RNA sequence data.

  • Nathan Boley‎ et al.
  • Nature biotechnology‎
  • 2014‎

The identification of full length transcripts entirely from short-read RNA sequencing data (RNA-seq) remains a challenge in the annotation of genomes. Here we describe an automated pipeline for genome annotation that integrates RNA-seq and gene-boundary data sets, which we call Generalized RNA Integration Tool, or GRIT. Applying GRIT to Drosophila melanogaster short-read RNA-seq, cap analysis of gene expression (CAGE) and poly(A)-site-seq data collected for the modENCODE project, we recovered the vast majority of previously annotated transcripts and doubled the total number of transcripts cataloged. We found that 20% of protein coding genes encode multiple protein-localization signals and that, in 20-d-old adult fly heads, genes with multiple polyadenylation sites are more common than genes with alternative splicing or alternative promoters. GRIT demonstrates 30% higher precision and recall than the most widely used transcript assembly tools. GRIT will facilitate the automated generation of high-quality genome annotations without the need for extensive manual annotation.


Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy.

  • Hamutal Arbel‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Identifying functional enhancer elements in metazoan systems is a major challenge. Large-scale validation of enhancers predicted by ENCODE reveal false-positive rates of at least 70%. We used the pregrastrula-patterning network of Drosophila melanogaster to demonstrate that loss in accuracy in held-out data results from heterogeneity of functional signatures in enhancer elements. We show that at least two classes of enhancers are active during early Drosophila embryogenesis and that by focusing on a single, relatively homogeneous class of elements, greater than 98% prediction accuracy can be achieved in a balanced, completely held-out test set. The class of well-predicted elements is composed predominantly of enhancers driving multistage segmentation patterns, which we designate segmentation driving enhancers (SDE). Prediction is driven by the DNA occupancy of early developmental transcription factors, with almost no additional power derived from histone modifications. We further show that improved accuracy is not a property of a particular prediction method: after conditioning on the SDE set, naïve Bayes and logistic regression perform as well as more sophisticated tools. Applying this method to a genome-wide scan, we predict 1,640 SDEs that cover 1.6% of the genome. An analysis of 32 SDEs using whole-mount embryonic imaging of stably integrated reporter constructs chosen throughout our prediction rank-list showed >90% drove expression patterns. We achieved 86.7% precision on a genome-wide scan, with an estimated recall of at least 98%, indicating high accuracy and completeness in annotating this class of functional elements.


A modERN resource: identification of Drosophila transcription factor candidate target genes using RNAi.

  • William W Fisher‎ et al.
  • Genetics‎
  • 2023‎

Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: