Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 67 papers

Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells.

  • Samuel Rogers‎ et al.
  • Data in brief‎
  • 2015‎

The presence or absence of a phosphorylation on a substrate at any particular point in time is a functional readout of the balance in activity between the regulatory kinase and the counteracting phosphatase. Understanding how stable or short-lived a phosphorylation site is required for fully appreciating the biological consequences of the phosphorylation. Our current understanding of kinases and their substrates is well established; however, the role phosphatases play is less understood. Therefore, we utilized a phosphatase dependent model of mitotic exit to identify potential substrates that are preferentially dephosphorylated. Using this method, we identified >16,000 phosphosites on >3300 unique proteins, and quantified the temporal phosphorylation changes that occur during early mitotic exit (McCloy et al., 2015 [1]). Furthermore, we annotated the majority of these phosphorylation sites with a high confidence upstream kinase using published, motif and prediction based methods. The results from this study have been deposited into the ProteomeXchange repository with identifier PXD001559. Here we provide additional analysis of this dataset; for each of the major mitotic kinases we identified motifs that correlated strongly with phosphorylation status. These motifs could be used to predict the stability of phosphorylated residues in proteins of interest, and help infer potential functional roles for uncharacterized phosphorylations. In addition, we provide validation at the single cell level that serine residues phosphorylated by Cdk are stable during phosphatase dependent mitotic exit. In summary, this unique dataset contains information on the temporal mitotic stability of thousands of phosphorylation sites regulated by dozens of kinases, and information on the potential preference that phosphatases have at both the protein and individual phosphosite level. The compellation of this data provides an invaluable resource for the wider research community.


Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training.

  • Maximilian Kleinert‎ et al.
  • Scientific reports‎
  • 2018‎

Regular exercise elicits advantageous metabolic adaptations in skeletal muscle, such as improved insulin sensitivity. However, the underpinning molecular mechanisms and the effect of diet on muscle exercise training benefits are unclear. We therefore characterized the skeletal muscle proteome following exercise training (ET) in mice fed chow or high-fat diet (HFD). ET increased exercise performance, lowered body-weight, decreased fat mass and improved muscle insulin action in chow- and HFD-fed mice. At the molecular level, ET regulated 170 muscle proteins in chow-fed mice, but only 29 proteins in HFD-fed mice. HFD per se altered 56 proteins, most of which were regulated in a similar direction by ET. To identify proteins that might have particular health-related bearing on skeletal muscle metabolism, we filtered for differentially regulated proteins in response to ET and HFD. This yielded 15 proteins, including the major urinary protein 1 (MUP1), which was the protein most decreased after HFD, but increased with ET. The ET-induced Mup1 expression was absent in mouse muscle lacking functional AMPK. MUP1 also potentiated insulin-stimulated GLUT4 translocation in cultured muscle cells. Collectively, we provide a resource of ET-regulated proteins in insulin-sensitive and insulin-resistant skeletal muscle. The identification of MUP1 as a diet-, ET- and AMPK-regulated skeletal muscle protein that improves insulin sensitivity in muscle cells demonstrates the usefulness of these data.


Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease.

  • Brian Finan‎ et al.
  • Cell‎
  • 2016‎

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

  • Lykke Sylow‎ et al.
  • Diabetes‎
  • 2013‎

In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.


Global redox proteome and phosphoproteome analysis reveals redox switch in Akt.

  • Zhiduan Su‎ et al.
  • Nature communications‎
  • 2019‎

Protein oxidation sits at the intersection of multiple signalling pathways, yet the magnitude and extent of crosstalk between oxidation and other post-translational modifications remains unclear. Here, we delineate global changes in adipocyte signalling networks following acute oxidative stress and reveal considerable crosstalk between cysteine oxidation and phosphorylation-based signalling. Oxidation of key regulatory kinases, including Akt, mTOR and AMPK influences the fidelity rather than their absolute activation state, highlighting an unappreciated interplay between these modifications. Mechanistic analysis of the redox regulation of Akt identified two cysteine residues in the pleckstrin homology domain (C60 and C77) to be reversibly oxidized. Oxidation at these sites affected Akt recruitment to the plasma membrane by stabilizing the PIP3 binding pocket. Our data provide insights into the interplay between oxidative stress-derived redox signalling and protein phosphorylation networks and serve as a resource for understanding the contribution of cellular oxidation to a range of diseases.


Sulforaphane attenuates cancer cell-induced atrophy of C2C12 myotubes.

  • Wenlan Li‎ et al.
  • American journal of physiology. Cell physiology‎
  • 2023‎

Cancer cachexia is common in many cancers and the loss of skeletal muscle mass compromises the response to therapies and quality of life. A contributing mechanism is oxidative stress and compounds able to attenuate it may be protective. Sulforaphane (SFN), a natural antioxidant in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) signaling to decrease oxidative stress. Although SFN has potential as a cancer therapeutic, whether it can attenuate muscle wasting in the absence or presence of chemotherapy is unknown. In healthy C2C12 myotubes, SFN administration for 48 h induced hypertrophy through increased myoblast fusion via Nrf2 and ERK signaling. To determine whether SFN could attenuate wasting induced by cancer cells, myotubes were cocultured with or without Colon-26 (C-26) cancer cells for 48 h and treated with 5-fluorouracil (5-FU, 5 µM) or vehicle (DMSO). SFN (10 µM) or DMSO was added for the final 24 h. Coculture with cancer cells in the absence and presence of 5-FU reduced myotube width by ∼30% (P < 0.001) and ∼20% (P < 0.01), respectively, which was attenuated by SFN (P < 0.05). Exposure to C-26 conditioned media reduced myotube width by 15% (P < 0.001), which was attenuated by SFN. Western immunoblotting and qRT-PCR confirmed activation of Nrf2 signaling and antioxidant genes. Coadministration of Nrf2 inhibitors (ML-385) or MEK inhibitors (PD184352) revealed that SFN's attenuation of atrophy was blocked by ERK inhibition. These data support the chemoprotective and antioxidative function of SFN in myotubes, highlighting its therapeutic potential for cancer-related muscle wasting.


Western Diet Induced Remodelling of the Tongue Proteome.

  • Mriga Dutt‎ et al.
  • Proteomes‎
  • 2021‎

The tongue is a heavily innervated and vascularized striated muscle that plays an important role in vocalization, swallowing and digestion. The surface of the tongue is lined with papillae which contain gustatory cells expressing various taste receptors. There is growing evidence to suggest that our perceptions of taste and food preference are remodelled following chronic consumption of Western diets rich in carbohydrate and fats. Our sensitivity to taste and also to metabolising Western diets may be a key factor in the rising prevalence of obesity; however, a systems-wide analysis of the tongue is lacking. Here, we defined the proteomic landscape of the mouse tongue and quantified changes following chronic consumption of a chow or Western diet enriched in lipid, fructose and cholesterol for 7 months. We observed a dramatic remodelling of the tongue proteome including proteins that regulate fatty acid and mitochondrial metabolism. Furthermore, the expressions of several receptors, metabolic enzymes and hormones were differentially regulated, and are likely to provide novel therapeutic targets to alter taste perception and food preference to combat obesity.


ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2.

  • Andreas Mæchel Fritzen‎ et al.
  • Molecular metabolism‎
  • 2020‎

Acute administration of the main protein component of high-density lipoprotein, apolipoprotein A-I (ApoA-1), improves glucose uptake in skeletal muscle. The molecular mechanisms mediating this are not known, but in muscle cell cultures, ApoA-1 failed to increase glucose uptake when infected with a dominant-negative AMP-activated protein kinase (AMPK) virus. We therefore investigated whether AMPK is necessary for ApoA-1-stimulated glucose uptake in intact heart and skeletal muscle in vivo.


Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate.

  • Xiaowen Duan‎ et al.
  • The Biochemical journal‎
  • 2022‎

Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3. Priming phosphorylation of murine TRARG1 at serine 84 allows for GSK3-directed phosphorylation at serines 72, 76 and 80. A similar pattern of phosphorylation was observed in human TRARG1, suggesting that our findings are translatable to human TRARG1. Pharmacological inhibition of GSK3 increased cell surface GLUT4 in cells stimulated with a submaximal insulin dose, and this was impaired following Trarg1 knockdown, suggesting that TRARG1 acts as a GSK3-mediated regulator in GLUT4 trafficking. These data place TRARG1 within the insulin signaling network and provide insights into how GSK3 regulates GLUT4 trafficking in adipocytes.


The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture.

  • Jason K K Low‎ et al.
  • Cell reports‎
  • 2020‎

The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition.


Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes.

  • Christoffer Clemmensen‎ et al.
  • Nature communications‎
  • 2018‎

Pharmacological stimulation of brown adipose tissue (BAT) thermogenesis to increase energy expenditure is progressively being pursued as a viable anti-obesity strategy. Here, we report that pharmacological activation of the cold receptor transient receptor potential cation channel subfamily M member 8 (TRPM8) with agonist icilin mimics the metabolic benefits of cold exposure. In diet-induced obese (DIO) mice, treatment with icilin enhances energy expenditure, and decreases body weight, without affecting food intake. To further potentiate the thermogenic action profile of icilin and add complementary anorexigenic mechanisms, we set out to identify pharmacological partners next to icilin. To that end, we specifically targeted nicotinic acetylcholine receptor (nAChR) subtype alpha3beta4 (α3β4), which we had recognized as a potential regulator of energy homeostasis and glucose metabolism. Combinatorial targeting of TRPM8 and nAChR α3β4 by icilin and dimethylphenylpiperazinium (DMPP) orchestrates synergistic anorexic and thermogenic pathways to reverse diet-induced obesity, dyslipidemia, and glucose intolerance in DIO mice.


Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice.

  • Lykke Sylow‎ et al.
  • The Journal of physiology‎
  • 2016‎

Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin-stimulated glucose uptake, although its role in exercise-stimulated glucose uptake is unknown. We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise. We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise.


The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs.

  • Toby A Dite‎ et al.
  • Nature communications‎
  • 2017‎

AMP-activated protein kinase (AMPK) is a metabolic stress-sensing enzyme responsible for maintaining cellular energy homeostasis. Activation of AMPK by salicylate and the thienopyridone A-769662 is critically dependent on phosphorylation of Ser108 in the β1 regulatory subunit. Here, we show a possible role for Ser108 phosphorylation in cell cycle regulation and promotion of pro-survival pathways in response to energy stress. We identify the autophagy initiator Unc-51-like kinase 1 (ULK1) as a β1-Ser108 kinase in cells. Cellular β1-Ser108 phosphorylation by ULK1 was dependent on AMPK β-subunit myristoylation, metabolic stress associated with elevated AMP/ATP ratio, and the intrinsic energy sensing capacity of AMPK; features consistent with an AMP-induced myristoyl switch mechanism. We further demonstrate cellular AMPK signaling independent of activation loop Thr172 phosphorylation, providing potential insight into physiological roles for Ser108 phosphorylation. These findings uncover new mechanisms by which AMPK could potentially maintain cellular energy homeostasis independently of Thr172 phosphorylation.AMPK is involved in sensing of metabolic stress. The authors show that the autophagy initiator ULK1 phosphorylates β1-Ser108 on the regulatory β1-subunit, sensitizing AMPK to allosteric drugs, and activates signaling pathways that appear independent of Thr172 phosphorylation in the kinase activation loop.


Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice.

  • Maximilian Kleinert‎ et al.
  • The Journal of physiology‎
  • 2017‎

Exercise is a potent physiological stimulus to clear blood glucose from the circulation into skeletal muscle. The mammalian target of rapamycin complex 2 (mTORC2) is an important regulator of muscle glucose uptake in response to insulin stimulation. Here we report for the first time that the activity of mTORC2 in mouse muscle increases during exercise. We further show that glucose uptake during exercise is decreased in mouse muscle that lacks mTORC2 activity. We also provide novel identifications of new mTORC2 substrates during exercise in mouse muscle.


Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock.

  • Kenneth Allen Dyar‎ et al.
  • PLoS biology‎
  • 2018‎

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


SILAC kinase screen identifies potential MASTL substrates.

  • Kamila A Marzec‎ et al.
  • Scientific reports‎
  • 2022‎

Microtubule-associated serine/threonine kinase-like (MASTL) has emerged as a critical regulator of mitosis and as a potential oncogene in a variety of cancer types. To date, Arpp-19/ENSA are the only known substrates of MASTL. However, with the roles of MASTL expanding and increased interest in development of MASTL inhibitors, it has become critical to determine if there are additional substrates and what the optimal consensus motif for MASTL is. Here we utilized a whole cell lysate in vitro kinase screen combined with stable isotope labelling of amino acids in cell culture (SILAC) to identify potential substrates and the residue preference of MASTL. Using the related AGC kinase family members AKT1/2, the kinase screen identified several known and new substrates highly enriched for the validated consensus motif of AKT. Applying this method to MASTL identified 59 phospho-sites on 67 proteins that increased in the presence of active MASTL. Subsequent in vitro kinase assays suggested that MASTL may phosphorylate hnRNPM, YB1 and TUBA1C under certain in vitro conditions. Taken together, these data suggest that MASTL may phosphorylate several additional substrates, providing insight into the ever-increasing biological functions and roles MASTL plays in driving cancer progression and therapy resistance.


Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development.

  • Ronnie Blazev‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2021‎

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases, suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development, but our molecular understanding of the precise glycans, catalytic enzymes, and lectins involved remains only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown digalactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labeling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins, most notably the upregulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation, suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the upregulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells.

  • Jaroslawna Meister‎ et al.
  • Nature communications‎
  • 2022‎

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with β2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective β2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of β-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle β2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic β2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating β2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.


In vivo metabolic effects after acute activation of skeletal muscle Gs signaling.

  • Jaroslawna Meister‎ et al.
  • Molecular metabolism‎
  • 2022‎

The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis.


Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function.

  • Jeffrey Molendijk‎ et al.
  • eLife‎
  • 2022‎

Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: