Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Cleavage of the vesicular glutamate transporters under excitotoxic conditions.

  • Andrea C Lobo‎ et al.
  • Neurobiology of disease‎
  • 2011‎

Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters (VGLUTs), and alterations in the transporters expression directly regulate neurotransmitter release. We investigated changes in VGLUT1 and VGLUT2 protein levels after ischemic and excitotoxic insults. The results show that VGLUT2 is cleaved by calpains after excitotoxic stimulation of hippocampal neurons with glutamate, whereas VGLUT1 is downregulated to a lower extent. VGLUT2 was also cleaved by calpains after oxygen/glucose deprivation (OGD), and downregulated after middle cerebral artery occlusion (MCAO) and intrahippocampal injection of kainate. In contrast, VGLUT1 was not affected after OGD. Incubation of isolated synaptic vesicles with recombinant calpain also induced VGLUT2 cleavage, with a little effect observed for VGLUT1. N-terminal sequencing analysis showed that calpain cleaves VGLUT2 in the C-terminus, at Asn(534) and Lys(542). The truncated GFP-VGLUT2 forms were found to a great extent in non-synaptic regions along neurites, when compared to GFP-VGLUT2. These findings show that excitotoxic and ischemic insults downregulate VGLUT2, which is likely to affect glutamatergic transmission and cell death, especially in the neonatal period when the transporter is expressed at higher levels.


Early Synaptic Alterations and Selective Adhesion Signaling in Hippocampal Dendritic Zones Following Organophosphate Exposure.

  • Karen L G Farizatto‎ et al.
  • Scientific reports‎
  • 2019‎

Organophosphates account for many of the world's deadliest poisons. They inhibit acetylcholinesterase causing cholinergic crises that lead to seizures and death, while survivors commonly experience long-term neurological problems. Here, we treated brain explants with the organophosphate compound paraoxon and uncovered a unique mechanism of neurotoxicity. Paraoxon-exposed hippocampal slice cultures exhibited progressive declines in synaptophysin, synapsin II, and PSD-95, whereas reduction in GluR1 was slower and NeuN and Nissl staining showed no indications of neuronal damage. The distinctive synaptotoxicity was observed in dendritic zones of CA1 and dentate gyrus. Interestingly, declines in synapsin II dendritic labeling correlated with increased staining for β1 integrin, a component of adhesion receptors that regulate synapse maintenance and plasticity. The paraoxon-induced β1 integrin response was targeted to synapses, and the two-fold increase in β1 integrin was selective as other synaptic adhesion molecules were unchanged. Additionally, β1 integrin-cofilin signaling was triggered by the exposure and correlations were found between the extent of synaptic decline and the level of β1 integrin responses. These findings identified organophosphate-mediated early and lasting synaptotoxicity which can explain delayed neurological dysfunction later in life. They also suggest that the interplay between synaptotoxic events and compensatory adhesion responses influences neuronal fate in exposed individuals.


Excitotoxic stimulation activates distinct pathogenic and protective expression signatures in the hippocampus.

  • Ebru Caba‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Excitotoxic events underlying ischaemic and traumatic brain injuries activate degenerative and protective pathways, particularly in the hippocampus. To understand opposing pathways that determine the brain's response to excitotoxicity, we used hippocampal explants, thereby eliminating systemic variables during a precise protocol of excitatory stimulation. N-methyl-d-aspartate (NMDA) was applied for 20 min and total RNA isolated one and 24 h later for neurobiology-specific microarrays. Distinct groups of genes exhibited early vs. delayed induction, with 63 genes exclusively reduced 24-h post-insult. Egr-1 and NOR-1 displayed biphasic transcriptional modulation: early induction followed by delayed suppression. Opposing events of NMDA-induced genes linked to pathogenesis and cell survival constituted the early expression signature. Delayed degenerative indicators (up-regulated pathogenic genes, down-regulated pro-survival genes) and opposing compensatory responses (down-regulated pathogenic genes, up-regulated pro-survival genes) generated networks with temporal gene profiles mirroring coexpression network clustering. We then used the expression profiles to test whether NF-κB, a potent transcription factor implicated in both degenerative and protective pathways, is involved in the opposing responses. The NF-κB inhibitor MG-132 indeed altered NMDA-mediated transcriptional changes, revealing components of opposing expression signatures that converge on the single response element. Overall, this study identified counteracting avenues among the distinct responses to excitotoxicity, thereby suggesting multi-target treatment strategies and implications for predictive medicine.


Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord.

  • Mia Emgård‎ et al.
  • Brain research‎
  • 2009‎

During the last decade, the interest in stem and progenitor cells, and their applications in spinal cord injuries have steadily increased. However, little is known about proliferation and cell death mechanisms in these cells after transplantation to the spinal cord. The aim of the present project was to study cell turn-over, i.e. total cell number, with time course of proliferation and cell death, in human neural precursor cells (NPCs) after transplantation to the injured rat spinal cord. Immunodeficient rats were subjected to lateral clip compression injuries, transplanted with neurospheres of human forebrain-derived NPCs two weeks after lesion, and sacrificed after 6 h, 1, 3, 10, or 21 days. Cell death was assessed by quantifying human cells immunoreactive for active caspase-3 and calpain 1-dependent fodrin breakdown products (FBDP). The results showed that after an initial drop, the number of implanted cells increased over time after transplantation. Cell proliferation was substantial, with 34% of human cells being immunoreactive for proliferating cell nuclear antigen at 6 h, but which declined over the next few days. The fractions of caspase-3-, and FBDP-immunoreactive cells were remarkably low, together representing 18% of all human cells at 6 h, and rapidly decreasing the next few days. Our results show that already 10 days after spinal cord transplantation of human NPCs as intact neurospheres, the number of human cells exceeded the initially implanted, which was the result of marked cell proliferation in combination with a low rate of apoptotic and non-apoptotic cell death taking place early after transplantation.


Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation.

  • Daniel J Hermanson‎ et al.
  • Nature neuroscience‎
  • 2013‎

Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Using medicinal chemistry and in vivo analytical and behavioral pharmacological approaches, we found that COX-2 is important for the regulation of eCB levels in vivo. We used a pharmacological strategy involving substrate-selective inhibition of COX-2 to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2 reduced anxiety-like behaviors in mice via increased eCB signaling. Our data suggest a key role for COX-2 in the regulation of eCB signaling and indicate that substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential.


Ampakine CX516 ameliorates functional deficits in AMPA receptors in a hippocampal slice model of protein accumulation.

  • Patrick M Kanju‎ et al.
  • Experimental neurology‎
  • 2008‎

AMPAkines are positive modulators of AMPA receptors, and previous work has shown that these compounds can facilitate synaptic plasticity and improve learning and memory in both animals and humans; thus, their role in the treatment of cognitive impairment is worthy of investigation. In this study, we have utilized an organotypic slice model in which chloroquine-induced lysosomal dysfunction produces many of the pathogenic attributes of Alzheimer's disease. Our previous work demonstrated that synaptic AMPA receptor function is impaired in hippocampal slice cultures exhibiting lysosomal dysfunction leading to protein accumulation. The present study investigated the effect of the AMPAkine CX516 on AMPAR-mediated synaptic transmission as well as the CX516 induced modification of single channel AMPA receptor properties in this organotypic slice-culture model. In whole cell recordings from CA1 pyramidal neurons in chloroquine-treated slices we observed a significant decrease in AMPAR-mediated mEPSC frequency and amplitude indicating synaptic dysfunction. Following application of CX516, these parameters returned to nearly normal levels. Similarly, we report chloroquine-induced impairment of AMPAR single channel properties (decreased probability of opening and mean open time), and significant recovery of these properties following CX516 administration. These results suggest that AMPA receptors may be potential pharmaceutical targets for the treatment of neurodegenerative diseases, and highlights AMPAkines, in particular, as possible therapeutic agents.


Discovery of small molecules that normalize the transcriptome and enhance cysteine cathepsin activity in progranulin-deficient microglia.

  • Maria A Telpoukhovskaia‎ et al.
  • Scientific reports‎
  • 2020‎

Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.


Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures.

  • Michael F Almeida‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2021‎

Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.


A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

  • Jason R Stephenson‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes.SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD.


Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

  • David Butler‎ et al.
  • PloS one‎
  • 2011‎

Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders.


Postnatal aniracetam treatment improves prenatal ethanol induced attenuation of AMPA receptor-mediated synaptic transmission.

  • Nayana Wijayawardhane‎ et al.
  • Neurobiology of disease‎
  • 2007‎

Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.


The Role of Lysosomes in a Broad Disease-Modifying Approach Evaluated across Transgenic Mouse Models of Alzheimer's Disease and Parkinson's Disease and Models of Mild Cognitive Impairment.

  • Jeannie Hwang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson's disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid β 42 (Aβ42) degradation product Aβ38, and this indicator of Aβ42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aβ42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aβ deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum.


Submicromolar Aβ42 reduces hippocampal glutamate receptors and presynaptic markers in an aggregation-dependent manner.

  • Meagan L Wisniewski‎ et al.
  • Biochimica et biophysica acta‎
  • 2011‎

Synaptic pathology in Alzheimer's disease brains is thought to involve soluble Aβ42 peptide. Here, sterile incubation in PBS caused small Aβ42 oligomer formation as well as heterogeneous, 6E10-immunopositive aggregates of 80-100kDa. The high molecular weight aggregates (H-agg) formed in a time-dependent manner over an extended 30-day period. Interestingly, an inverse relationship between dimeric and H-agg formation was more evident when incubations were performed at 37°C as compared to 23°C, thus providing an experimental strategy with which to address synaptic compromise produced by the different Aβ aggregates. H-agg species formed faster and to higher levels at 37°C compared to 23°C, and the two aggregate preparations were evaluated in hippocampal slice cultures, a sensitive system for monitoring synaptic integrity. Applied daily at 80-600nM for 7days, the Aβ42 preparations caused dose-dependent and aggregation-dependent declines in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptor subunits as well as in presynaptic components. Unlike the synaptic effects, Aβ42 induced only trace cellular degeneration that was CA1 specific. The 37°C preparation was less effective at decreasing synaptic markers, corresponding with its reduced levels of Aβ42 monomers and dimers. Aβ42 dimers decayed significantly faster at 37°C than 23°C, and more rapidly than monomers at either temperature. These findings indicate that Aβ42 can self-aggregate into potent synaptotoxic oligomers as well as into larger aggregates that may serve to neutralize the toxic formations. These results will add to the growing debate concerning whether high molecular weight Aβ complexes that form amyloid plaques are protective through the sequestration of oligomeric species.


Abnormal response of distal Schwann cells to denervation in a mouse model of motor neuron disease.

  • Dario I Carrasco‎ et al.
  • Experimental neurology‎
  • 2016‎

In several animal models of motor neuron disease, degeneration begins in the periphery. Clarifying the possible role of Schwann cells remains a priority. We recently showed that terminal Schwann cells (TSCs) exhibit abnormalities in postnatal mice that express mutations of the SOD1 enzyme found in inherited human motor neuron disease. TSC abnormalities appeared before disease-related denervation commenced and the extent of TSC abnormality at P30 correlated with the extent of subsequent denervation. Denervated neuromuscular junctions (NMJs) were also observed that lacked any labeling for TSCs. This suggested that SOD1 TSCs may respond differently than wildtype TSCs to denervation which remain at denervated NMJs for several months. In the present study, the response of SOD1 TSCs to experimental denervation was examined. At P30 and P60, SC-specific S100 labeling was quickly lost from SOD1 NMJs and from preterminal regions. Evidence indicates that this loss eventually becomes complete at most SOD1 NMJs before reinnervation occurs. The loss of labeling was not specific for S100 and did not depend on loss of activity. Although some post-denervation labeling loss occurred at wildtype NMJs, this loss was never complete. Soon after denervation, large cells appeared near SOD1 NMJ bands which colabeled for SC markers as well as for activated caspase-3 suggesting that distal SOD1 SCs may experience cell death following denervation. Denervated SOD1 NMJs viewed 7 days after denervation with the electron microscope confirmed the absence of TSCs overlying endplates. These observations demonstrate that SOD1 TSCs and distal SCs respond abnormally to denervation. This behavior can be expected to hinder reinnervation and raises further questions concerning the ability of SOD1 TSCs to support normal functioning of motor terminals.


CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling.

  • Brian C Shonesy‎ et al.
  • Nature neuroscience‎
  • 2013‎

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.


Involvement of calpain in AMPA-induced toxicity to rat cerebellar Purkinje neurons.

  • Bobbak Mansouri‎ et al.
  • European journal of pharmacology‎
  • 2007‎

AMPA receptor-elicited excitotoxicity is manifested as both a type of programmed cell death termed dark cell degeneration and edematous necrosis, both of which are linked to increased intracellular Ca2+ concentration. The appearance of marked cytoskeletal changes in response to abusive AMPA receptor activation, coupled with increased intracellular Ca2+ concentration suggests activation of various destructive enzymes such as calpains, a family of Ca2+-dependent cysteine proteases. Since calpains and AMPA have been linked to both necrotic cell death and programmed cell death, we sought to determine the role of calpains in mediating both types of AMPA-mediated toxicity in Purkinje neurons of the cerebellum. These studies employed immunohistochemistry for cytoskeletal breakdown products of calpain activity coupled with confocal microscopy and pharmacological interventions with calpain and AMPA receptor antagonists. The present study identifies an early involvement of calpains in mediating AMPA-induced dark cell degeneration, but not edematous necrosis, based upon the effectiveness of AMPA to generate calpain-derived alpha-spectrin cleavage products in cerebellar Purkinje neurons that express dark cell degeneration, and the effectiveness of calpain antagonists, PD150606 and MDL28170, to attenuate AMPA-induced dark cell degeneration. Moreover, the AMPA receptor antagonist CNQX, a proven inhibitor of AMPA-elicited dark cell degeneration, also blocked AMPA-induced increases in alpha-spectrin, further suggesting interplay between abusive AMPA receptor activation, calpain activation and dark cell degeneration. Since AMPA-induced dark cell degeneration possesses morphological changes that resemble those that occur following brain ischemia in vivo, hypoglycemia, or extended seizure episodes, the involvement of calpains as mediators of cell death is potentially far reaching and has widespread therapeutic implications in numerous CNS disorders.


Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex.

  • Xuejing Li‎ et al.
  • Journal of neurochemistry‎
  • 2007‎

Rat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.15 mg/mL) of GABA(A)Rs that contains the gamma2 subunit (plus alpha and beta subunits) and that is associated to gephyrin and the GABAergic post-synaptic complex and (ii) a lower-density pool (rho = 1.06-1.09 mg/mL) of GABA(A)Rs associated to detergent-resistant membranes (DRMs) that contain alpha and beta subunits but not the gamma2 subunit. Some of these GABA(A)Rs contain the delta subunit. Two pools of GABA(A)Rs insoluble in Triton X-100 at 4 degrees C were also identified in cultured hippocampal neurons: (i) a GABA(A)R pool that forms clusters that co-localize with gephyrin and remains Triton X-100-insoluble after cholesterol depletion and (ii) a GABA(A)R pool that is diffusely distributed at the neuronal surface that can be induced to form GABA(A)R clusters by capping with an anti-alpha1 GABA(A)R subunit antibody and that becomes solubilized in Triton X-100 at 4 degrees C after cholesterol depletion. Thus, there is a pool of GABA(A)Rs associated to lipid rafts that is non-synaptic and that has a subunit composition different from that of the synaptic GABA(A)Rs. Some of the lipid raft-associated GABA(A)Rs might be involved in tonic inhibition.


Role of the proteasome in excitotoxicity-induced cleavage of glutamic acid decarboxylase in cultured hippocampal neurons.

  • Márcio S Baptista‎ et al.
  • PloS one‎
  • 2010‎

Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two isoforms--GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However, no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of GADs) was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the UPS has been implicated in the events triggered during excitotoxicity and the first molecular target of the UPS affected in this cell death process.


Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology.

  • Manjunath Lamani‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2019‎

FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.


Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation.

  • Ana P Simões‎ et al.
  • Cell death & disease‎
  • 2018‎

Despite the characteristic etiologies and phenotypes, different brain disorders rely on common pathogenic events. Glutamate-induced neurotoxicity is a pathogenic event shared by different brain disorders. Another event occurring in different brain pathological conditions is the increase of the extracellular ATP levels, which is now recognized as a danger and harmful signal in the brain, as heralded by the ability of P2 receptors (P2Rs) to affect a wide range of brain disorders. Yet, how ATP and P2R contribute to neurodegeneration remains poorly defined. For that purpose, we now examined the contribution of extracellular ATP and P2Rs to glutamate-induced neurodegeneration. We found both in vitro and in vivo that ATP/ADP through the activation of P2Y1R contributes to glutamate-induced neuronal death in the rat hippocampus. We found in cultured rat hippocampal neurons that the exposure to glutamate (100 µM) for 30 min triggers a sustained increase of extracellular ATP levels, which contributes to NMDA receptor (NMDAR)-mediated hippocampal neuronal death through the activation of P2Y1R. We also determined that P2Y1R is involved in excitotoxicity in vivo as the blockade of P2Y1R significantly attenuated rat hippocampal neuronal death upon the systemic administration of kainic acid or upon the intrahippocampal injection of quinolinic acid. This contribution of P2Y1R fades with increasing intensity of excitotoxic conditions, which indicates that P2Y1R is not contributing directly to neurodegeneration, rather behaving as a catalyst decreasing the threshold from which glutamate becomes neurotoxic. Moreover, we unraveled that such excitotoxicity process began with an early synaptotoxicity that was also prevented/attenuated by the antagonism of P2Y1R, both in vitro and in vivo. This should rely on the observed glutamate-induced calpain-mediated axonal cytoskeleton damage, most likely favored by a P2Y1R-driven increase of NMDAR-mediated Ca2+ entry selectively in axons. This may constitute a degenerative mechanism shared by different brain diseases, particularly relevant at initial pathogenic stages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: